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SECTION I
INTRODUCTION AND SUMMARY

This report presents the "operator performance" design requirements and definition of five different Yet
related models and algorithms for computer simulation subroutines or modules. Each of these was con-
ceived and developed to operate interactively with a global simulation program whose goal is to simulate
the principle ground-based man-machine operations involved in the AN, UPI)-X system in which video
type displays present processed data sensed by a side looking radar, mounted in a USAF reconnaissance
aircraft.

Features of these algorithms were derived in each case from: (1) current human performance data and
theory, (2) adaption of prior computer simulation models whose goals were similar to the current ones, or
f:3) a combination of these. The algorithms were designed for simulating four operator-dependent tuctions:

11) video scanning and target detection
(2) target classification
GOl decision making
(-4) interoperator commuri, ations.

In addition to some specific error condition indicators, each algorithm was specified to provide:
(1) the simulated nerformance time of the operator(s)

A 1 (2) an indication of the success or failure of the operator(s) action(s) or decision(s).

1)esign features or goals for the algorithms are:

I1) Generic. Generality was a primary goal. This is desired as a cost effective approach when various
system design configurations are to be analyzed (as explained in the background section, this was the
existing situation) and a procedures analysis* is to be performed. If the functional level is such that it
can he found in numerous other applications then the writing of general routines is a sound approach.
There is good reason to justify the allocation of the above given man-dependent functions to other ap-
plications. e.g., in a broad sense the scan and detect functions are applicable to many other visual tar-
get selection applications. The levels of functions are allocated to permit reassignment or trade-off be-
tween operators or groups of operators.

t Modularity. This design principle was adapted to facilitate future change or modification of models
or submodels, hence adding flexibility and cost effectiveness. By proper grouping of functions, modules
can be designed as independent, thus allowing independent development, verification, and mainte-
nance and or modification. An ideal goal for design and simulation is the development of a library of
generic modules which can be utilized as building blocks in a properly structured top-down design.
This approach is being recognized in industry as the most cost effective and utilized to eliminate re-
dundancy and errors. Tro tlate. generic human performance models for simulation have been scarce.

3 )ptimum [nterfacing. The algorithms are rich in variables, yet an attempt has been made in the
design process to reduce complexity. Since these algorithms % ere defined without a complete descrip-
timn of total system simulation program available, it is anticiptated that some modification of the flow
logic fo r the coded subroutines may be required during the programming and integration phase. Inter-
actions between routines must, by design, be handled by the main simulation program as these are ap-
plication dependent. In certain applications these interactions may be considerable, e.g., in a multi-
operator task there can be considerable switching back and forth between scanning, decision, and
communications. It was beyond the scope of this initial design iltage to anticipate all the main pro
gram interfacing ramifications. Possible interactions between all Lements is shown in a general way
in Figure 1-1.

analysis of operating pro cedures based on operator decisions and I)ecific tasks: information-ation requirements
task allocations, man -machine and intra-crew interactions; wrk- load crteria and mission s-enarios.

7 .1
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SECTION II
BACKGROUND

The AN./ UPD-X system output is a group of near real-time reconnaissance reports on tactical targets un-

der all weather conditions. Data are collected via radar aboard an aircraft and transmitted to the ground

via a data link. The information is then digitized, processed, and passed to the Exploitation subsystem.

The Exploitation subsystem mission requirements include target detection, classification, location, and

trend analysis. The objective of the global simulation program, which the results of this report were to

support, was to concentrate its efforts on this subsystem.

The AN'UPD-X system was in the design or "evaluation of alernatives" phase during the model devel-

opment period. As a result, the human oriented subroutines were developed in a sufficiently general way

to allow their use during comparative simulation of alternative AN/UPD-X system designs-even those

developed by different industrial contractor teams including different AN/UPD-X equipment config-

urations and diverse operator sequences. One of the goals of the total model is, then, the simulation of al-

ternative system designs to allow the USAF to evaluate the comparative "value" of the alternatives. An-

other element which was established as a requirement or assumption was the potential for simulating

multiple operators performing the monitoring, communications, and decision-making functions.

Function allocation and procedures analysis would be the resulting products of the simulation studies.

I'I
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SECTION III
SCAN/DETECT MODULE

OVERVIEW OF SCAN AND DETECTION
Consider an AN UIPD-X video terminal, monitored by an operator, displaying a replica, (i.e., a two di-
mensional view) of a geographical area of the earth's surface and an operator scanning this (RT to de-
tect targets.

This section describes the development of a subroutine to simulate such an operator moving his eyes
from one fixation point to another over the screen to accomplish the scan and then. having scanned to a
point at which one or more targets is located "nearby " to simulate the detection of the target or targets
by the operator. Six different modes of scanning the screen are provided in the simulation:

* Scan Mode Aou' Points are Sehcted

randor at randoim
sequc'nti al left to right zit fixed increryLens
areo of emphasis 4 points in designated rectangular area. 2 ill randomn and repeat
corners and (enter I0 points in corner and center areas. 5 at r;atidoni, ind repeat
directed as designated oIv the MAIN progran

* other ti, he defined

Although the view is presented on a cathode ray tube, it is assumed here that the surface is flat and the
scene presented is rectangular.

An overview of this subroutine is shown in Figure 3-1. Figure 3-1 also indicates that each time the sub-

routine is entered, the subroutine:

(1) identifies all first-time presented targets as either cued or not cued (cueing includes flashing, mov-
ing symbols, color contrast or the like)

(2) determines one or more successive fixation points to represent the scan
(3) determines probabilistically whether or not one or more targets are detected at each fixation point
(4) terminates the selection of fixation points when the first detection is successful
(5t calculates the total operator scan-detect performance time.

Accordingly, the module's purposes are:
(1) to determine the coordinate position of successive fixation points until a valid target is found with-

in a prespecified distance of a fixation point
(2) to determine the elapsed AN 'UPD-X operator time to make the scan(s) and the detection
() to determine correctness of the detection.

FACTORS AFFECTING TARGET DETECTION
Detection is the most elementary response of the visual system and is the response which must precede
any other action response to the target. For detection in a two dimensional, monochromatic viewing situ-
ation, a difference in the luminous intensity of one portion of the visual field relative to other portions is
the fundamental cue. The likelihood with which such a difference in luminance will be detected by an in-
tact observer is dependent in part on: (1) the position of the target relative to the observer's line of sight,
and (2) a variety of measurable stimulus (target) attributes.

Target shape is one of the target attributes considered by the detect subroutine. Specifically. the border
between the target and the nacKgrouna. it traced, will form a figure. The figure may be regular or irregu.
lar. It may be closed or open.

Characteristics of a target's border or contour may vary. At the border of a target which is "sharp," the
change from target luminance to background luminance is quite abrupt [as shown in Figure 3-2(a)J. A

11
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taitn exisf' fit h . thit chitngt, l'otw'-cI lu'c it I Iace lexel v aIt Ithe tatrgt.'s l,relCr isrelit iv'. g ra

tia,:.! sho~iv ii 1igure 3

'largvt irna ge mav ac irtificillfl processec~ to in irease the. rrontrast a tilt- oorder. Thu i;,n-t

changes at a tI order so processed are shown In Figure :32c. This type of processing enhiances the p ri,
nencr- ofila noraer above that of a border of the vtype- shown in Fig re -2(a).

Finall , . tnte oharacteristics of' a target may lie consiant or van a hI c as a function of timne a ta rge-t ima

tlasn o" it lmlox- move Sucth cues increase target dletectabilitY. and should bee considered in the. mode- s~noh
till. capailtitt' i, extixctedl t, be at requirement in the- AN IJI -X svystem.

)i)tn~t aitac

(a) (b) (C)

Figuro- C hange' or I uniinancti .-t at *-ha rr' bord, if' a visualI target (it), at a 'iu~e

border ehW. and at an a etificallf; onhanced btorder Mc.

T ' 'I, tI :e ~ther t;' iti 't-'n iw'l' -Izt.1 ca'tiled bix the visuai: anlgie. rht ii:t t!: g'

-'it ','It:~ eve t, ol h, asrvel

'at -'i-i moal-. 's~'ihc. i ne -01,w, ;irm~tiofl in) cach' o tile attribuites tW itftuLen cc

OTHER VARIABLES
W~'ithin tilt :,IduhIf othe \:'rihles ;,!"( -t the probabilit 'y of target detectiotn by' adjustment 4f large''

rnirnetf-rs to nssume the# i niracteristics of an equai~i' prominent circular fixated target. nh' it abi
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TARGET CUEING
ietore entering the principal detection logic. a test is made to letermine whether ir not a cued target ex-

ists over the entire display.

In a processed target situation (such as the AN/UPI)-X), target conspicuity may be artifically increased
bv accentuating features external to the raw video return. Suitable cueing, through the use of fixed, flash-
ing, or moving symbols of high brightness or color contrast, may cause aetection of a cued target to be
essentially certain with minimal latency. All cued targets are assigned a probability of detection of 1OP-
RI) where RI) is a random deviate) and cued targets will be the first targets to be fixated for classi-
fication by the observer.

Accordingly, in block 1 of Figure 3-3, the presence of unprocessed cued targets is tested. If cued targets
exist, they are identified and selected for subsequent classification, processing continues at block 1 of Fig-
ure 3-3.

UNCUED TARGETS
'rocessing for probability of detection of uncued targets is applied only to targets within about 12 de-

.rees of the present fixation point. The present fixation point of the observer is Known to the scan, detect
: s'utroutine.

The angle, a. between the fovea and each target is computed based on the x and y coordinates of the
_, - point of fixation (from the scan calculation), the coordinates of the center of each target which are suppli-

edi as input, and the eye-to-screen viewing distance talso supplieo as input but modified by a random de-
viate.) The off-axis angle, a, is retained with each target for later use.

"The ability of the eve to detect stimuli which are more than 12 degrees from the fovea appears poor, as
will be described subsequently. In addition, data are not availaole which describe detection of targets
,)ver 12 degrees from the fovea, as a function of the variables addressed here.

At block 2 of Figure 3-A, all targets within 12 degrees of the point of fixation are identified along with
their :-haracteristics. The target characteristic input values which are associated with each target are:

C - target to background contrast
LWR - target length to width ratio
TA - target area (square minutes of angle)

In each succeeding block of Figure 3-3, the computations are applied to each identified target
sequentially.

TARGET SHAPE
The detectability of targets is affected by their shape. The effect of shape is accounted for by the com-
putations of block 3, Figure 3-3.

Lamar, Hecht, Shlaer, and Hendley (1947) studied the relationship between target length to width ratio
and contrast required for detection. They employed rectangular targets of various areas. Their data were
based on experimental trials in which the background luminance was 17.5 foot lamberts. This level is in
the moderate photopic range, as are other data applied in the present simulation module. Relative de-
tection thresholds for the targets of Lamar et a]. are presented in TAble 3-1. Each row of Table 3-1 shows
ratios of detection threshold of other targets to that of the detection threshold for the target of the same
aria having a length to width ratio of 2:1. Examination of the rows of Table 3-1 shows that as the length
to width ratio of a target increases, with target area held constant, the contrast required for detection in-
creases substantially. Examination of the columns of Table 3-1 indicate that the increase in required con-
trast is largely independent of target area over a substantial range.

The mean relative threshold at each level of target eccentricity is shown towards the bottom of Table 3-1.
These mean values are approximated by the following equation within the model:
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The results of applying this formula are:

Off-Axis (;raph Calculated
A ngle Value, Value

0.9 .9 )h
1.3 S) .79
1.91 .71 .7(0
2.7, .60 .61
3's .5o .51
5.7 .40 .43

12.1 .30 .25

In order to determine target size of an equally visible fixated target, the equivalent circular target size is

multiplied by the relative acuity at that off-axis angle.

For example, consider an AN, UPD-X target image whose center is 3.8 degrees from the fovea. From the

values presented above, the calculated relative acuity for targets displaced 3.8 degrees from the visual

axis is .53. A target, then, is assumed to be equally detectable at the fovea if it is .53 as large as a target

which is 3.8 degrees from the tovea. Thus, a target subtending 2.0 degrees which is 3.A degrees from the
fovea is assumed to be equally detectable as a target subtending 1.06 degrees which is at the point of vi-

sual fixation.

In the detection module, in accordance with this logic, equivalent target diameter for targets presented in

the peripheral retina is replaced by equally visible fixated target diameter, computed as equivalent target

diameter multiplied by relative acuity plus or minus a small random deviate. That is:

EF) z- E(')(.8525 - 241n a t-(RI)l

in which:

EFD equivalent fixated target diameter (minutes of arc)
ECI) - equivalent circular target diameter (minutes of arc)

-1 angle of the target from the fovea (degrees)

RD random deviate

It is likely that plots of relative acuity within various planes about the visual axis would not appear iden-

tical. Wertheim's original work showed dissimilar plots of relative acuity as a function of displacement

into the nasal or temporal portions of the retina. However, the data employed in the adjustment for dis-

tances off-axis are thought to be representative. The technique is applied to all targets appearing off-axis

regardless of direction.

The threshold luminance required for detection of a peripheral target is also elevated in comparison with

a foveal target (Taylor, 1961; Kinzley & Akerman, 1976; Ward, 1977). However, it does not seem appropri-

ate to further adjust visibility of peripheral targets for luminance, since it appears that the requirements

for additional size and for additional luminance for detection of fixated targets may be consequences of a
single phenomenon.

TARGET BRIGHTNESS/DETECTION
To this point in the logic, adjustments have been made in the simulated target to produce characteristics

of a foveal equivalent target. The detection probability is calculated in block 6 of Figure 3-3. This com-

putation is based on equivalent target contrast and other previously calculated equivalent foveal target

characteristics.

Heinz and Lippay (1928) studied the probability of seeing circular targets of varying size as a func'ion of

brightness contrast with the background. Targets of six sizes were presented at the point of fixation. The
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visual angles subtended by the targets varied from 11 minutes to 183 minutes. These angular subtenses

correspond to .05 inch to .85 inch diameter cathode ray tube targets viewed from 16 inches.

The data of the subject of Heinz and Lippay are presented in Figure 3-5. These curves were presented by

Brown and Mueller (1965). The x and y axes have been converted to contrast ratio (AI/I) and probability

of detection, respective.

A straight line of approximation was fit in Figure 3-5 to the portion of each target size curve falling be-

tween the .20 and .80 probability values. Inspection of these lines indicates that those associated with the

three small targets (the curves to the right) have very similar slopes. The lines approximating detection

probability of larger targets appear to diminish in slope as target size increases. Each of these two

groups of three lines may be described by a separate equation.

10-

so-Of 35 20' 1"

40-

oA40

20

0.0 .016 .025 .040 .063 .100 .156 .251 .358

Figure 3-5. Probability of detection of foveally presented circular test targets of six di-

ameters as a function of contrast ratio [data from Heinz and Lippay (1928), after

Brown and Mueller (1965), rescaled].

In the case of thte small targets, detection probability may be described as a function of equivalent target

contrast and equivalent target diameter by the following equation:

PD = [2.79 (log 100 ETC) + 1.90 EFD - 5.191/100

in which:

EFD = equivalent fixated target diameter (minutes)
ETC = equivalent circular target contrast
PD = probability of detection

The equation presented above may be viewed as a linear equation of the form y = mx + b, in which the y

intercept, b, may vary. The slope, m, in the equation equals 2.79. The applicable y intercept is computed

as 1.90 EFD -5.79. This equation reproduces the data related to small targets shown in Figure 3-5 with

considerable accuracy. Typical results are:
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* If C >.0907e-'(1 (7EFD then set C - .09(07e-.00 ;117 E F ) and I') is computed normally. Without
this restriction detection probability decreases with increasing contrast.

* If C > -. O00222EFD+.0944, then PD = 1.0. Without this restriction, P1) exceeds 1.00. (If this re-
striction and the previous restrictions are both violated, then PI) = 1.00.)

POSITIVE VERSUS NEGATIVE CONTRAST
The detectability of targets presented on cathode ray tubes when targets possess higher luminance than
the background (positive contrast) was compared to the detectability of targets of lower luminance than
the background (negative contrast) by Harriman and Williams (1949) and by Baker and Earl (1968). Nei-
ther study found differences in detectability of targets due to algebraic sign of target contrast. Accord-
ingly, we calculate the probability of seeing targets on the basis of the absolute value of target contrast.

IMAGE ENHANCEMENT
Brainard and Caum (1965) investigated the effect of an image enhancement process on performance of
various detection and classification tasks which were applied to video processed aerial photographic im-
agery. To produce the imagery tested, air photos were deliberately defocused by contact printing through
ground glass. The blurred prints were then displayed on a television monitor in unmodified form and
with enhancement. The enhanced imagery was composed of this video signal and its negative second de-
rivative. A higher level of gain (amplification) was also applied in processing the enhanced imagery. The
primary subjective effect of the enhancemen. technique was to sharpen the blurred contours of the un-
processed imagery. A number of detection and classification tasks were studied, and a variety of per-
formance measures were reported. The measure reported by Brainard and Caum which is most similar to
detection as defined here involves proportion of targets detected. The proportion of targets detected on
processed imagery was 60 percent greater than the proportion of targets detected on unprocessed
imagery.

In the current AN UI)P-X model subroutine, the findings of Brainard and ('aum are applied by multi-
plying the probability of detection of all targets by 1.6, if image enhancement is applicahle. That is:

Enhanced PD 1.6 (P1)) - RI)

This computation is performed in block 8 of Figure 3-3, if edge enhancement is applicable. ais determined
in block 7.

SELECTION OF SUBSEQUENT FIXATION POINT
At this point in the processing, control returns to the scan portion of the subroutine to select the next fix-
ation point if no targets were detected. If one or more targets was detected, then performance time is
calculated.

PERFORMANCE TIME
It appears fairly standard that observers maintain fixation on a point for approximately .33 seconds.
Values in this area were found by Williams. Fairchild, Grauf, Juola, and Trumm (1970) and by Ward
(1977).

The data of Williams et al. (1970) indicated a mean fixation period of .444 sec. with a standard deviation
of .209 sec. These values include time required for movement of the eye, detection, perception, and selec-
tion of the next fixation point. Further breakdown of the time taken for fixation is unnecessary in the
present context. A stochastically determined fixation time, based on the parameters listed above, and the
number of scan eye fixations is calculated in block 9 of Figure (-3.

In calculating performance times, which include one or more eye fixations plus a detection operation, the
concept of operator stress as previously developed by Siegel and Wolf (1969) is employed. Stress can be
defined here as the state of mind of the AN 1JPI)-X operator when responding to a dynamic situation in
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which targets have a limited viewing time. Current psychological theory suggests that increased stress
(due possibly to greater number of potential targets in this application) acts as an organizing agent. Ac-
cordingly, this subroutine incorporates a stress function in which a no stress situation is the base condi-
tion and the mean conditions and data above apply. Stress buildup will result in decreased performance
times until a condition is reached which represents a stress threshold. After this point, if stress continues

to build up, the effect will be disorganizing and significantly higher performance time will result. Thus,
the stress threshold corresponds to an operator's break point before which his performance is enhanced
and beyond which his performance deteriorates.

COMPARISON WITH VARIABLES ADDRESSED IN OTHER MODELS
Greening (1976) reviewed in detail six "principal" models of air-to-ground visual target acquisition. The

* application of the present model differs from those reviewed by Greening. However, the range of vari-
ables addressed is comparable. The incorporation of variables applicable to the present model and to
those reviewed by Greening in the various models is shown in Table :3-2. Variables applicable only to air
to-ground models, such as color contrast or masking, and those applicable only to the present model,

such as cueing and edge enhancement, are not addressed in Table :3-2. The numbers of variables incorpo-
rated in the various models are comparable.

TABLE 3-2

VARIABLES IN(ORPt)RATEI) IN PRESENT MODEl. AND IN SIX
AIR-TO-AIR MOI)ELS REVIEWED) BN GREENING 1976)

t.-- z

Z -Z

V a ri able's

C'haracterristics

"l'arget Size V V, V ¢

Target Shape V

( oniphex Targets v/ V Iv/

"lirget C'ontrast V V V/ V/ V

C lutter V

Areas ot" hli.
Tla rge.t ILiklihmd

C harac'teristics

Foveal Threshthl V I/¢ V V/ V V

Pevripheral
hreshold V V V V

T( ,) r7 5 4 6

2 3



PROGRAMMATIC ASPECTS OF SCAN/DETECT SUBROUTINE
'The h urnan-effects ts peut 5 duscribhed aboitve are now sV'4ummifartized and embeded iidtt a ciomp~uter Sub-

"'Utitie to simulate~ diperattor performi ng the scan and detection funlcttions.

INPUTS
The data itenis sho wn in 'Pabt liii are' req ui red as in put to the scan-detect su broutine. It is assumed that
the'se data will be aiiitiahle tither as, at result. of input to the global sjmuhatiiin model as param'eters e.g.,
tern 7. opera tor0 sp eed proi ienv o VIr get'nerate-i i 'h, m ia in prtogrami (e.g.. it em !i, d.ata abhout each

tairget)I.

Pht' subtintie proviovs ','r imaon,.th it six imtets i (-,vt st,,n iitem i -it tjattle S-it s it iUntiont id the

)p~rator nutnoi'r, M. i'hius, each operator is !s(iijitt have at particuiar wian tei'hiui which canll
:ninitiied bY MAIN :is at functiorn dIIv'' task. lini' since mission start. hr aiher pertinent "actoir.

ihe ratidoni scan (mode KR venerates X tmd 'rditnates X('{ tHI and \'('( fll)) at rninuom in v here

11, e the displayv m"r'odes :.ta 'P, "he' v, 'IXatItIon ',iin* (I'-pi'tlis ii ifit,- cidnates (t ihe pre-

t-inrg one. in ines to in IF t mie odule nmit~!..- a i' (!- cifltsr hor scmt 'S ,-iee, l'aan e t-2 :t'tn 10
Ih'sequetntial 8- misiti acIids su'tvv.ssie fixirf,! ' mI)s :!0-ving hoiruzontail;% in X %itr atremc-n I iKl

TAX antif the hortter mcii then aigain ir'im 0t' lo rith! i tiii't' fA I)EI AYm.

"'hi- corners and (enter mode ( .ijiits it -nntnii -i' n :at, corner i011 lintter r, as st'iuttit~all

hen tve points ;invwh're, moo sii m. I hi' arei tf enitapisis moe 4':; gt'neriitei' cur w it~ lts n
'hie destgnated imn-ary areat, :olloweul Iv two : -ttndimn cA - ii. '!hi diret'('l n-, gent r,'ti-s 'a
tixatton pitints ;)ut uses the on' oroviiii'tl% fivn miall r'iii if. :'his 'r, vid's :", t i.-<' !: xl4'i -'rt

-ni'tatir iiis t'Ie'te t'ia tartget md 'issi's it ,iciutht'r t hi'o t~ Vt'- stmii;iti'i. F" i 6", ;c:-

'(-irine, we iidtimct'e ot carintls.

-'tevie-wing area cias 'iorldinatts, as <ac%%n in F'gut. ..

* the dispta 'v is of a given size tild fixin is ,imiteit L t he disptt:' ireA -TWO vY TS tiNL' :
ond wvidth (bordeni

ailf dimensions are in inches

'1 he ret'tangie is divided into six d tas enoted '-ARFL'\ whentihi' si- de Fat 'i,; 'iili'

sselected.
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TABLE .1-3 &ONT'D.U

15. Standard deviation of average scan time. SIGMA

Recommended value: SIGMA a0.209 sees.

16. D~ata relating to all targets wl,..I IT MAX) for a total simulation mission
iteration.

a. Visibility indicator 0-not visible to operator now Vi ITi
I-visible to operator for 1Is[ limei

2-visible to operator, not I st time

h). Position coordlin ate of the most recent fixat ion poi nt:

X-coordinate I'Xt IT,
Y-coordinate rN,(IT

c. Trarget luminance difference i.e., target to bac-kground contrast ratio. 0i IT)

d. Target length-to-width ratio. L.w it IT)>

e.- Target area ( square minutes of vi sual anogle fo i a viewer whose eve is If6
inches from display. TA lTi

f. I)etection classification status I)(,St II'

I -consider for detect ion
2-de(tected
* -classified

/I -passed to ano(ther opera tor
-- active
6-tailed to detect

g. Tlarget cue, status: 0-not vet determiined iby suhroutinci C('SIT,
I-cued (Whinkintg)

2-rn t -ued

7. l'roia hi Ii tv of a false posit ive bei ng detected ;,t a poin t where i v al id target ex-
ists on the screen. PFALSE

I'l. Image enhancement tea ture indlicator IEN H

I yes
0 no

26



(0. YMAX) (XMAX, YMAXI

4 5T 6

S C O NERD__ __ __

2 3

(0,0)(XMAX. 0)

SCORNER SBORDER

Figure 3-7. Model's Representation of CRT Surface.

ote Ihoi the~ presentation ot'data relating to the nosition and status of each tartget is Drovided hv MAI N
iTtt!i ahle -. Item i6. .\ccordingiv, MAIN cotosteapaance andj disappearance of targets

n the sc'reen as at tonction of' simUlated mission time and other features of' the simulation such ats the
speed ')f ireiral't. dimension oft the AN I.)PD -X viewing area, and the like.

SCAN DETECT LOGIC
Figure :i-s shows the detailed scan-detect 4uhroutinc logic. The five pmage flow, chart shows vat-h major
pro O( ssi niz iii on in cludoin g a brief dIescri pt ion of' t he proocessi ng req u ired and abhbrev iat ed pruogra mm ati c
;tatement) . D ata items not defined in the input list i Tahle 3-3) or the output list (Table 3-6i) are shown tin
the list of other data items (Table 31-4).

In 'ordvr to prevent an operator or ot her error fromn generating an arbitrarily long sequence of fixation
ao0ints wit hout limit (sat'v in response to at "no target 'situation,. the subroutine counts the number (it fix
ition points, using the variahle MSC . If' MSC equals the present limit MAXPtTS (Table 3-2, item 12). then

11-he subrortine sets the variahle FL AG -1

SCAN
"hereu is ;I iferent section oft the flow (hart for each of' the scan modes dlesignated 1w lower case letters
Orresponoiing to the six valuies tot the scan modh iouicator NM1(M).

U hle *1-5 is puresented to summarize the method of determining the series ot' fixation point coordinates tor
-c Athe modes.

n ach caise. W() R) :id Y( '0011{l) are determined in accordance with the reouirements of' Ua hle .1-A
ino the coordtinate system olt Figure 3-7. When compieted. the processing continues for any of the ca
ifltoies at c'ircle 'D- in Figure i1-h.

DETECTION
"he target otetectittn loogic. sti ting at circle 1), is repeated for each target found to Ibe within the, tre-
scrihed circle, whose diameter is (ieterrninei stochasticad lv. First. all targets not previously 4teteeted art-
aeset it Iatus uide I item if of Table i1-i, D S( dl' I . l'his appites to targets curreiitly having status ;

r- h Initially :ill targets will he set to tas k, i hi- MA IN iurograii.) Those Jetectetl 1(tote 2). -jassificed
'c orde 0 or imrwoessed hy ianother o pera tor ciode 1i ro. n ot ti uv con sidereti again fo r et ect u -n
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TABIE 3-4

OTHER DATA ITEMS

Parameter Data Name

Module scan count, the number of fixation points selected per operator task (one
entry of the scan module MSC

I)seud(o-random number, equiprobable 0-1 RY

Pseudo-random number (avg. 0, sigma 1): i.e., random deviate RI)

Distance of target from fixation point TI)(IT)

Task performance time PT

Flag indicating no targets found after checking the presented maximum number
". of fixation points (0reset; I set) FIAG

Relative detectioin threshold HT

Eq uiv alent circular target contrast ETC

Randomitzed relative detection threshold RRT

Equivalent rircular dimeter (minutes of arc) Ei)

Relative acuit. RA

Target ofT-axis angle subtended by eye between target and fixation point ALPHA

Equivalent target diameter at fixatiton point Iminutes of are) EFI)

Piroibability of target detection P)D

)perator numlier M

Target number IT
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TABLE :1.5

GENERAL, I)ESCRIPTION OF S(CAN MODE TE( HNIQUES

SCAN MODE METHOD OF FIXA TION POINT SELECTION

RANDOM SELECT XCOORI) TO BE EQUIPROBABILE'FROM SBORDER To( XMAX -
SBORDER
SELECT YCOORI) TO BE EQUIPROBABLE FROM SBORI)ER TO (YMAX -

SBORI)ER}

SEQUENTIAL SELECT NEXT POINT TO BE DELTAX UNITS TO THE RIGHT. IF THE RESU LTING
POINT EXTENDS BEYOND THE RIGHT HAND BORDER, SELECT THE BORDER AS
THE NEXT POINT. IF THE LAST POINT WAS ON THE RIGHT HAND BORDER,
SELECT:

XCOORI) SBORI)ER
YCOORD YCOORI) + DELTAYfYMAX - BORDER.

IF THE LAST POINT WAS:

XCOORI, (, or XCOORD- XMAX - BORI)ER then
YCOORD ) YCOORI, -YMAX - BORER

NEXT POINT IS:

XCOORI) SBORI)ER
YCOORD SBORI)ER

(ORNERS SELECT NEXT POINT TO BE IN A(CORI)ANCE WITH THE FOLLOWING SCHEME
WHICH REPEATS EVERY 15 CYCLES

SCAN Scan point randomly selected in

1,6 lower left corner
2,7 lower right corner
3.8 upper left corner
4,9 upper right corner
5,10 center
1l-15 anywhere on screen

limit all points to he within borders

AREA OF THE SCREEN IS DIVIDED INTO 6 SCAN EMPHASIS AREAS OF EQUAL. SPACE. SE-
EMPHASIS LECT NEXT POINT TO BE IN ACCORDANCE WITH THE FOLLOWING SCHEME

WHICH REPEATS EVERY 6 CYCLES

SCAN Fixation point randomly selected:

1-4 in designated scan area of emphasis
5-6 anywhere on screen

limit all points to be within borders

DIRE('TED THE COORDINATES OF THE FIXATION POINT ARE SPECIFIED BY THE MAIN
PROGRAM

OTHER TO BE DEFINED
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SCAN DETE(CT SUBROUTINE O(Tit"I'S

Output Data Items Data Name

I Performance time of operator task (Secs.. IJ"

2. Coordinates of fixation point near which at least one target is identified, i.e., cur-
rent fixation point. XCOORI), YCOORI)

3. Flag indicating that the maximum number of fixation points (MAXPTS) has been
reached without identifying a nearby target. FLAG

-. Indicator that a false positive was identified at this point. FAISE

FALSE l(Yes)
O(No)

5 Target number of all targets(s) for which the scan detect subroutine has made a
condition or situation change such as: IT

( 1) target identified as cued
(2) target detected
( :) target failed to detect

4

In order to determine whether or not a target whose code is 1 is close enough, its distance from the cur-
rent fixation point TI)(IT) is calculated. Figure 3-9 shows the geometry of detection. The scan/detect pro-
gram assumes that the distance between the eye of the operator and the screen is equiprobable from 13 to
19 inches, and the viewing angle is 12'. Thus, the scan module will select a value for the visual detection
radius VI)R on a Monte Carlo basis. For each target and each fixation point, a new value of VDR will be
selected which is equiprobable in the range 2.76 to 4.04 inches, VDR=(RY + 2.15) 1.28. The detection sta-
tus I)CS(IT) is then set to active code 5) for all targets within the range. A similar geometric analysis is
used for the off-axis angle, calculated next if there is a target within the visual detection radius. Here, the
screen distance is the value of TD(IT) just calculated, the angle is ALPHA, and the side is again from 13
to 16 inches. Thus,

ALPHA = ARCTAN[TD(IT)/(13 + 6RY)]

where RY is a random number equiprobable in the range 0 to 1. Where there are no targets within the
distance, the next step is to determine whether or not a false positive is identified at this fixation point
(circle b, Figure 3-8).

Following this, the detection probability is calculated for each target. The actual detection or failure to
detect for each code 5 target is accomplished at circle "F" of Figure 3-8 by the comparison of a new pseu-
do random number RY with PD for each target. Detection is assumed if RY is less than PD. Detected tar-
gets are set to DCS(IT) code 2 and targets not detected are set to code 6.

The total performance time is then determined at circle "g" of Figure 3-8. For subjects who are non-
stressed (STR(M)=I) and have average proficiency (F(M)=I), the performance time is determined sto-
chastically so that in the long run the average will be a multiple of the average scan time, AVGTM. The
multiple is the number of fixation points scanned prior to first detection or failure to detect a target,
MSC. For example, if four fixation points were scanned before a detection and AVGTM-0.44 seconds,
then the performance time, PT, would be 4 x .44 regardless of the number of targets. In order to introduce
a stochastic element into the process of determining performance time the product of the standard devi-
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ation around AVGTM (SIGMA) and a random deviate is added to AVGTM to determine the total time.
The important elements of stress for operator M, STR(M), his stress threshold, STRM(M), and his speed/
proficiency factor F(M), are also considered by using the performance time calculation utilized in Siegel
and Wolf (1969).

OUTPUTS
The outputs which the scan/detect subroutine makes available to the MAIN program are those identified
in Table 2-6. Basically these are the performance time, the last (current) fixation point coordinate, a flag
if the number of fixation points reached the limit, the indicator that a false positive situation occurred,
and the target number of those targets whose status changed. This fifth output advises the MAIN pro-
gram about the targets that are of immediate interest so that it can then, by examining the target data
items (item 16, Table 3-3) determine future operator actions.

... VDR

*120

~EYE

VDR = (SIDE)I(TAN 12')
= 0.21256 SIDECRT SCREEN

SIDE VDR

13 2.76
16" 3.19
19" 4.04

SIMILARLY: ALPHA = ARCTAN TD
SIDE

Figure 3-9. Detection Geometry
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SECTION IV
CLASSIFICATION MODULE

This section and the following section present two largely independent designs for AN/UPD-X system
target classification modules. The first was based on the concept of physical features of the targets to be
simulated. The second, presented in Section V, is independent of such physical features and is therefore
considered more desirable for application to the AN/UPD-X system because of its greater system specific-
ity. The second subroutine is called the Alternate Classification Module.

Both classification subroutines assume that a specific target has been detected and both are concerned
with: (1) the assignment of meaning to a target, and (2) the determination of the time required to assign
the meaning.

The feature analysis approach utilized in the first claesification subroutine resembles, in a sense, a Fouri-
er analytic approach, and involves pattern generation for preselected primitive patterns in which the
number of strokes in the primitive plays a key role. The probability of correct classification is determined
in part as a function of the deviations of the target from its primitive.

A summary flow chart of the steps in this classification subroutine is presented as Figure 4-1. Figure 4-1
will be referred to throughout the subsequent discussion. The subroutine aspects concerned with time

derivation (i.e., classification time) are discussed following the description of the classification logic. The
section concludes with a presentation of programming aspects for modeling classification by the AN/
UPD-X operator by a features analysis.

BACKGROUND
According to Shulik (Taylor et al., 1966) "a simulation of a system or an organism is the operation of a
model or simulator which is a representation of the system or organism" (p. 2). "A computer simulation
model is a logical mathematical representation of a concept, system, or operation programmed for solu-
tion on a high speed electronic computer" (Martin, 1968, p. 5). Such a representation is not construed to
mean a counterfeit 'specious structure, but a deliberate synthesis of real variables.

Available, therefore, is a technology for systematic inquiry into a set of real events whose salient dimen-
sions have been abstracted and coded. But, confidence in the simulation is conditioned by the cor-
respondence of the representation to the set of real events for which it is explicity intended-in this in-
stance, the recognition of pictorial images which are generated by side-looking airborne radar. In
developing the present model, the attempt was made to represent real events which have been identified
as basic to the recognition/classification process in the experimental and the theoretic literature.

The "re ;ognition of pictorial images" specifies and constrains the selection of meaningful parameters for
the model. By their very nature, images constitute sensory abstractions of distinctive features of real ob-
jects. Images, as "departicularized" cognitive analogues to real objects, contain useful information about
real objects, which can be conveniently stored and readily retrieved as the occasion may require. The
model recognizes this abstraction and generates images on the basis of distinctive features and presents
the simulated operator with a pattern of uniquely constrained, perceptible attributes.

Finally, recognition stipulates a past experiential familiarity with real objects: there is the explicit aware-
ness of the real object having been sensed on a previous occasion. Through recognition an image can be
retrieved from storage so that its information can be used in judging and reaching a decision about a
here-and-now encounter. These attributes are treated -itian the model as context and operator ability
variables.

The recognition of pictorial images is subsumed by a class of events/processes, variously called "pattern
recognition," "form perception," "shape discrimination." and similar designations. "The term 'pattern
recognition' has come to denote the detection or selection of objects in the environment which merit clas-
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sification and the subsequent assignment of those objects to representative categories" (Brown and
Aylworth, 1970, p. 203). Such a venture is not without challenging complexities. The capacity of the com-
puter to manipulate efficiently variegated displays of patterns provides a ready vehicle for surveying and
analyzing them. The theoretical potential and the experimental application of computer simulation mod-
els in the methodical probing of the multidimensional properties of pattern recognition for an improved
understanding of the perceptual processes proper to pattern phenomena and for determining the eco-
logical validity of the "artificial intelligence" attribute of such models have been critically examined and
annotated by Gyr et al. (1966), Reed (1973), Uhr (1963, 1966, 1973), Wanatube (1969), and Zusne (1970).
Notwithstanding the acknowledged usefulness of the computer in the clarification and resolution of psy-
chological/behavioral issues, the essential passivity of a computer model with respect to a stimulus-dis-
play must be firmly differentiated from the active and selfcorrecting role of the human perceiver in pat-
tern recognition. In this connection, the meaning of stimulus/cue/signal would be in accord with
Dodwell's (Uhr, 1966) concern with the definition of stimulus, as an antecedent, and its relationship to a
response. For, even though the purification of theoretical obscurities was not formally intended in this
query, select theoretical formulations vere necessary to satisfy the criterion for a computer simulation
model for the recognition of pictorial images, as already postulated.

The recognition of pictorial images, as pattern recognition, accordingly, begins with a stimulus input of
sense-data, which are physiologically mediated through the sense receptors and associated neural net-
works culminating in a cortical registration to result in a cognitive assessment in terms of a classi-
fication, i.e., to assign a name to the pattern. Without digressing into philosophical and psychological in-
terpretations of perception, pattern recognition involves sequential transformation of information from
one mode to another together with ordering it to preexisting memories so that learned responses can be
promptly executed. Coherent wholes emerge. As a consequence, the categorization of an exemplar in its
predesignated/correct class-a ship as a ship or an armored tank as an armored tank-can be expedited.
Accuracy of classification is hereby implied, as well as the time to complete the classification successful-
ly. The recognition of pictorial images, therefore, marshalls diversified experiences to direct expeditiously
behavior/response in a prescribed context.

The efficiency of pattern recognition, and implicitly, the recognition of pictorial images, cannot be dis-
sociated from the quality of stimulus input into the information processing system, be it human or com-.
puter. Recall that in tie present case input in the real situation is the image resulting from side-looking
airborne radar on reconnaissance missions for military intelligence. Jensen et al. (1977) detailed the tech-
nical superiority of this approach for the photography objects/targets of special interest. Brainard and
Caum (1965) and Brainard and Ornstein (1965) stressed the importance of image clarity as a base for the
extraction of viable information from aerially phtographed targets. It must be assumed, therefore, that
enhancement techniques have been applied to the aerially photographed targets so as to improve the
probability of accurate classification with maximal speed.

Image clarity, as image quality, suggests the presence of intentional structure in the stimulus for comput-
er simulation. Such structure mandates a meaningful resemblance between pictorial image and photo-
graphic image, in contrast to the conventional research practice of using random polygons and other geo-
metric desigi,s, histoforms, and alphanumerical symbols in varying fonts, and other kinds of known
objects. That is to say, stimulus input should not be unstructured/nonsense patterns. Its meaningfulness
should be oriented to the objectives for which the computer simulation model is intended. In interpreting
the results of familiarity judgments of nonsense patterns Arnoult (1960) noted that "It reflects only the
obvious fact that the objects of visual experience are not a random sample of all possible shapes or
forms. Rather, there are certain invariances in the forms of the real world and nonsense forms will be
judged to be familiar to the extent that these familiar physical properties appear in them." (p. 266). More-
over, in assessing the results of studies into meaningful judgments of nonsense patterns Arnoult (1960)
concluded that "Nonsense forms will be judged as meaningful to the extent that they embody the same
physical characteristics which have come to be associated with meaningful objects in the real world" (p.
266). The advantage of the use of nonsense patterns in pattern recognition, thus, becomes dubious.
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IMAGE GENERATION
With this background discussion in mind, it becomes obvious that a simulated form must be generated
from each target (already detected) for which a classification is desired. In block 1, Figure 4-1, an image
is generated for classification.

To this end, a set of primitives (Uhr, 1973), consisting of varying lengths of the line segments, degrees of
angularity/slope including the horizontal and vertical orientation and degrees of convex and concave
curvature, was prepared (Figure 4-2) to be used as the principal components in the construction of mean-
ingful configurations. This selection of primitives faithfully reflects the cluster analysis of features in
pattern design indicated by Gibson et a]. (Reed, 1973). This selection also incorporates the distinction be-
tween structural (logon) and metrical (metron) content of data, proposed by McKay (Brown and Michels,
1966) where structural content refers to variation in feature like line segment, slope, and curvature, and
metrical refers to variation in units for a feature like length of line segment and degree of slope. This se-
lection, moreover, could be regarded as a population of features, samples of which were used, but not ran-
domly, in the construction of meaningful configurations to accommodate Zusne's (Reed, 1973) criterion of
a pattern, as "a configuration consisting of several elements that somehow belong together" (p. 4).

Each primitive/ feature in Figure 4-2 was assigned a numerical index to specify its metric content. Con-
sider first the line length (Figure 4-2(a)). In this case, the numerical index is 1; the longest line segment is
assigned the numerical index of 7. The remaining numerical indices, 2 through 6, were assigned to the in-
termediate lengths of line segments. Similarly, in the subset of angles/slopes, the numerical index indi-
cates the degree of angle, as legended. For example, the numerical index 4 indicates a horizontal orien-
tation without slope; the numerical index 8 indicates a vertical orientation without slope; the numerical
index 2 indicates a slope of 45 degrees in a right downward orientation, and the numerical index 7 mndi-
Cates a slope of 45 degrees in a right upward orientation. Other numerical indices for angle/slope indi-
cate the degree of angularity as well as the right-left and downward-upward orientation. The numerical
indices can be similarly interpreted for the subset of curved primitives, where the numerical index .4 indi-
Cates an absence of curvature.

An infinite variety of real world type patterns may be generated from this set of strokes. Figure 4-3
presents examples of pictorial images, as patterns in Zusne's sense, assembled from the Figure 4-2 char-
acterized strokes. The primitives in each pictorial image were ordered to resemble as closely as possible a
real object/target. Each primitive image is coded with a numerical index for easy identification. (Note
that these represent merely a sample set of primitives.)

Each image is composed of a collection of strokes, varying in number from 2 to 10. A frequency distribu-
tion of strokes per Figure 4-:3 image is presented in Table 4-1. Fourteen of the images (70%) are composed
of four to seven strokes. Three primitive images (15T6) exceeded these limits in both directions.

Each stroke in an image is characterized by an element from each of the three subsets of strokes. Thus,
length of line segment, degree of slope, and degree of curvature specifyv each stroke. Three numerical indi-
ces, listed in Table 4-2 are associated with each stroke. The first refers to the length of the line segment;
the second refers to the degree of slope, and the third refers to the presence or absence of curvature. For
example, the three strokes in image I are characterized as: 7-7-4, 1-1-4, and 1-11-4. The first set of three
digits designates a very long line segment at an angle of 45 degrees without curvature. The second and
third sets of three digits designate very short line segments which converge at an angle of 20 degrees
without curvature. The two strokes in pictorial image 13 are characterized as: 6-8-4 and 6-8-4. Each set of
digits designates moderately long line segments in a vertical orientation without curvature. A primitive-
characterizvd stroke, thus, functions as an individual operator in determining the selection of elements to
be considered for inclusion in generated image.

The use of individual operators in this fashion exemplifies an "analytical method" of pattern generation.
Concerning such usage, Uhr (1963) noted that "a large number of separate analytic operations are per-
formed on the input-operations of the sort *is there a left concavity?' 'Is there an upper horizontal?'
'How many crossings does the pattern make with various lines?'. - and these operators are satisfied not
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I I (a)
LENGTH OF LINE SEGMENT

8

90

10 45 45
40 40

20 524

20 3

45 45(b

1120 20 2

12 1

ANGLE

7 6 ( 5 4(3))

DEGREE OF CURVATURE (LENGTH OF CURVED LINE SEGMENTS)

Figure 4-2. Primitive-Characterized Strokes Used
In the Construction of Pictorial Images

41



1. * 6. * 11. * . 16.

2. * 7. * 12. . * 17. . *

~<

3. 8. , 13. * 18. .

4. • . 9. . * 14. . , 19. ,

5. 10. , o 15. . * 20. ,

. c( . . . . .\S

Figure 4-3. Sample Primitive Images Composed of Basic Indexed Strokes
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TABLE 4-1

FREQUENCY OF STROKES FOR THE SAMPLE OF 20 PRIMITIVE IMAGES

Num her of
Strokes Frequen cy

2 1

2

",1

6 4
7 1

9 1
- 10

only by a rigidly placed input, but also by inputs over certain displacements, such as any curve any-
where within a specified section of the matrix" (p. 48). In effect, combinations of operators can be assem-

bled to serve as a subpattern common to several pictorial images, e.g., the "dish-like" formnation in picto-
•L rial images 17 through 20, characterized by the primitives in strokes 3-7-4, 3-9-4, and 4-4-4, or converging

angular lines in pictorial images 10 through 12, characterized by the primitives in strokes 1.1-4 and 1-11-
4.

IMAGE GENERATION LOGIC
. Image generation takes place in block 1, Figure 4-1. The abbreviated logic for the generation of the image

to be generated is presented in Figure 4-4. The images are generated from the strokes shown in Figure 4-
2. Fuller detail on the integration of this logic into the subroutine is given in the section on subroutine
implementation.

RECOGNITION
Once an image is generated, the problem becomes one of determining whether or not it is recognized cor-
rectly (blocks 2, 3, 4 of Figure 3-1) and how long it takes the system operator to make the classification.
Classification pre-supposes discriminable patterns.

The efficacy of the classification strategy is contingent on the information abstracted and encoded from
the specified primitive characteristics. In this respect, "Eleanor Gibson... suggested in a review of percep-
tual learning that a distinction could be made between theories of perceptual learning based on a tem-
plate matching process and those based on the detection of features.. .The two main theoretical ap-
proaches on the problem of pattern recognition, according to Neisser are template matching, in which
each new input is compared to a standard and feature analysis, in which the presence of particular parts
of a pattern is decisive" (Reed, 1973, p. 11). Reed indicated the ascendancy of "features analysis" over
"template matching" because of the flexibility of feature analysis and because it rests on structuring the
stimulus pattern in terms of primitive-characterized strokes to correspond to environmental invariants.

The advantage of feature analysis is also reflected in Tulvig's "encoding specificity principle." According
to Tulvig, specific encoding operations are performed on what is perceived to determine what is stored,
and what is stored determines what retrieval cues are effective in providing access to what is stored (Tu-
Ivig and Thomson, 1973, p. 369). The relative strength of cues as features constituting the perceptual con-
text at the time of learning is hereby emphasized.

Further, supporting evidence for feature analysis, as implicit to encoding specificity, is reported by Reed
(1973) and by Phomson and Tulvig (1970). The observations of Caldwell and Hall (1970), Pick (1965), Pos-
ner and Keele (1970) and Reder et al. (1974) can be judged to be supportive in that perceptual conditions
of learning contribute to the propriety of discriminative decisions on the basis of a feature analysis. In
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general, Tou asserted that "...feature selection has been considered as a key to the classification and rec-
ognition of patterns. Pattern recognition can be regarded as the categorization of input data into identi-
fiable classes via extraction of the significant features of the data from a background of irrelevant de-
tail•.. for practical pattern recognition systems, the determination of complete discriminatory features is
extremely difficult, if not impossible. In general, only some of these features can be found. The classi-
fication scheme can be simplified by making use of these features and the available contextual infor-
mation (Wanatabe, 1969, p. 505).

At best, the primacy of features over template matching/scheme or theory may be presupposed, insofar
as geometric aspects of patterns-length of line segments, curvature, and slopes-incorporate salient fea-
tures into the final global/holistic synthesis basic to generalization, which in turn, can operate to refine
discriminative judgments about real episodes/events/ objects.

Specifically, the computer model calculates an initial classification probability (block 2, Figure 4-1). This
probability is then successively modified to account for various figural, contextural, and observer experi-
ence training aptitude effects (blocks 3 and 4, Figure 4-1). The details of the computer algorithm are pre-
sented in a later section on subroutine implementation.

First, the logic calls for determining an initial classification probability on the basis of the number of
strokes in the generated target. This first approximation is based on the logic of Deese (Zusne, 1970) that
"stimulus complexity and ease of identification appear to be related as a U-shaped function." That is to
say, features can neither be too few or too many and neither too similar nor too dissimilar to expedite the
recognition of pictorial images. The function employed in the simulation is presented in Figure 3-5.

Figure 4-5 was developed on the basis of the data presented by Levine and Eldredge (1974) who asked ex-
perienced photointerpreters to classify a set of already detected targets. Each target was presented on a
light screen in frame form and circled. Varying amounts of ancillary information were provided and "dif-
ficulty" was also varied. The data of Levine and Eldredge indicate accuracy probability to range from .34
to .76 with an overall mean at .50.

This initial classification probability is then successively moderated (degraded) by four functions: (1) de-
viation from primitive in number of strokes, (2) deviation from primitive in angle of main stroke, (3) devi-
ation from primitive in length of main stroke, and (4) deviation from primitive in curvature of main
curved line, if any.

The first of these functions, deviation from the primitive in terms of number of strokes (Figure 4-6), is
based on the conjecture that classification accuracy will degrade as the detail in a representation devi-
ates from learned or anticipated detail. In a sense, a figure which is the same as a learned figure can be
considered to be a structured stimulus. The influence of structure in form perception was acknowledged
by Aiken and Brown (1971) who asserted that "Thus it appears that the 0, in dealing with relatively
weakly structured stimulus configurations, will impose a consistent structure of his own generation, to or-
ganize the stimulus configuration" (p. 282). Arnoult (1960) concluded similarly, as already noted.

Empirical image evaluative studies in which the amount of structure (learned detail) was varied also sup-
port this conjecture. Coluccio and Wasielewski (1970) varied image contrast and resolution in an in-
vestigation of photointerpreter performance with enhanced and nonenhanced equipment systems. Max-
imum completeness ([total correct = identifications/total possible components] x 100) ranged between 70
percent and 30 percent for the conventional method of viewing. The 70 to 30 comparison represents about
2.5 fold range. Similarly, MacLeod (1964) concluded after a photointerpreter performance study that "re-
ducing image contrast, resolultion or scale (within the ranges tested) leads to a reduction in the number of
detectable changes." MacLeod reported identification accuracy to vary between 33 percent and 9 percent
as a function of contrast. This represents about a fourfold range. Figure 3-6 was therefore constructed to
represent a threefold range which is about midway between the MacLeod and the Coluccio and Was-
ielewski studies.
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The deviation from angle of main; stroke function (Figure 3)-7) rests on the argument that a shape rotated
to a different position is less readily rcognized when it is rotated as compared to the orientation in
which it was originally learned As stated by Hake.

Actuallv. the fact that recognition of' forms and comparative judgments of
forms deteriorates when brms aire rotated with respect to the observer has
been known tor a long time 1 1966. p. 151 1.

Flake reported a number of studies which support the contention of modified association value for slanted
(rotated) figures.

The angle of rotation, however, is not linearly related to recognition and identification difficulty; shapes
are recognized better in some ol ientations than in others, depending on their configuration and on the re-
lationship of the axis of rotatiot to !.he main dimensions of space (Zusne, 1970). Zusne (1970) also consid-
ered "normal orientation" with respect to the retinal displacement from a customary orientation as well
as the physical inclination of the observer's head. Accordingly, Oetjen (Zusne, 1970) reported that "recog-
nition was good only when forms maintained their customary orientation with regard to the observer's
retina" (p. 301 ). Hake (1966) confirmed that rotation can affect perception of form, and, implicitly, the rec-
ognition of pictorial images. The pertinence of rotation orientation of pattern is mandated by the proba-
bility that, in the radar photographing of military targets, it can be assumed that the tilt of the camera
will not be constant uniform over the flight path during a mission, thus producing inversions and other
distortions of pictorial images.

In the present case, the results of Arnoult (1954) were relied on. Arnoult varied 10 nonsense shapes over 8
angular positions and asked subjects for judgments of same or different from a standard. The total range
of errors was between 20 and :30 percent (a twofold increase) with some discontinuity in the data. Ar-

* noult's data were smoothed and rescaled to develop Figure 4-7. However, the shape of the Arnoult curve
was closely approximated over the mid range of Figure 4-7 and the twofold relationship was maintained.

The function, deviation from length of main stroke from the minimum (Figure 4-8) presupposes that sub-
jective response alternatives increase as the target size decreases so that the match between current stim-
ulus and mental template is more difficult. That is, guessing must be instituted until a correct "match"
between stimulus-input and memory-pattern has been achieved when very small targets are involved.
The constraints that preexist in the real environment need to be discovered through successive trial-and-
error episodes, until stimulus features correspond to predefined pattern features sufficiently that the in-
tended recognition response is obtained.

Bruns, Bittner, and Stevenson (1972) in a dynamic televisual identification task concluded that "Target
effects were primarily related to target size expressed either as target area or target diagonal." Similarly,

Steedman and Baker (1960) found search time to increase as target size decreased and Rusis and Snyder
(1965) found target size to be statistically significant in a televisual study of recognition of air-to-ground
targets. The same effect was found by MacLeod (1964) in an aerial photointerpretive study. And, Brain-
ard and Caum (1965) reported an almost linear relationship between the size of the gap in a C and accu-
racy of perception in the position of the gap. The Brainard and Caum data indicated an approximate 4:1
increase in accuracy as gap size increased from .08 millimeters to .28 millimeters. To construct Figure 4-8,
the Bruns, Bitner, and Stevenson target diagonal data were employed. Their data indicated an almost
linear relationship (r = .98) between slant range identification and target diagonal with a slant range
identification ratio of about 6:1 for "smaller" as compared with "larger" targets. Accordingly, Figure 4-8
was scaled to reflect a 6:1 ratio in a linear manner.

The fourth function (Figure 4-9), deviation in curvature, is similarly based on the contention that devi-
ation from an anticipated image will decrease classification accuracy. The search initiated to retrieve in-
formation has been described, for example, by Checkosky (1971) as: "..,the model of information pro-
cessing in a memory search task presented ... involves the following stages: (a) First, visual information
from the incoming stimulus is passively registered. This information is then used to direct and verify the
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subsequent memory interrogation. (b) Second, a visual code is generated for each of the items in the
memory set. (c) Third, the visual code is then interrogated dimension by dimension. This memory inter-
rogation does not involve a serial search through the memory set items. Instead, Ss apparently have di-
rect access to that required information for each dimension. (d) Fourth, when sufficient information is ob-
tained to allow the selection of a response, the memory interrogation terminates and the appropriate
response is selected" (p. 388). Dumas and Grass (1973) outlined a similar proposal. Neisser (Reed, 1973)
recognized the necessity for a stimulus examination as well as a memory examination phase for identi-
fication of the stimulus pattern. Paramount in the dynamic search, then, is sensitivity to a select stimu-
lus here-and-now (perception), a comparison (if that stimulus with previous experiences, and storage, fol-
lowed by a classification judgment of "same" or "different," and, finally, the certification of that
recognition through the verbalization of a preassigned name.

Unfortunately, no studies were identified which reported data relative to the effect of curvature on recog-
nition accuracy. Accordingly, the Figure 3-9 curve was derived on the basis of the best professional judg-
ment of Applied Psychological Services' staff members.

CONTEXT
The importance of context (block 4, Figure 4-1) to adequate classification is clearly evident.

The figure-ground attributes of context provides additional cues which may incline a person to one or an-
other response in some instances and a categorical exclusion of a response in others. Accordingly, an ar-
mored tank would not be perceived as moving on a body of water. Context, thus, prescribes and proscrib-
es the range of probable responses.

In contrast, our computer-generated patterns are context-free. A program of viable associations to repres-
ent a manifold of context codings would be prohibitive. It is conceivable that select "primitive-character-
ized strokes" could be included for classes of the generated images incorporated herein. To determine the
degree to which the inclusion of "cues" could approximate the reality of diversified contexts would, how-
ever, require extensive study.

Unfortunately, "the matter of quantification of figure ground organization has not been really tackled by
psychologists, although the concepts involved are clear enough to be operationally defined" (Zusne, 197().
In the present simulation, the data of Miller and his various co-workers were relied on. However. we note
that Miller's work is based on semantic context. Generalization from a semantic context to a differ-
entiated radar context may or may not be completely tenable. Certainly words and letters possess forms
and there is little known about central nervous system processing which supports arguments that such
forms are processed differently from pictorial representations. On the other hand, we do not seriously ar-
gue that the word "fox" looks like a fox. Regardless, both words and other representations possess what
Miller calls "decision units" and context is assumed to reduce the number of such units.

Miller, Heise, and Lichten (1951) reported a range of context effects of zero percent to about 30 percent de-
pending on the degree of context. They also found little additional gain from repetition. Their non-
repetition data are employed in the present simulation. Specifically, a random number between 0 and
.30 is drawn and divided by two. This division is performed because we believe pattern context to be less
influential than semantic context. The resultant is added to the current accuracy value.

OPERATOR PROFICIENCY AND STRESS
Finally, individual proficiency (block 4, Figure 4-1) in the recognition of pictorial images is a function of
individual differences in feature selection and response biases. Aptitude variability and length of service
in the activity of recognition of pictorial images are obvious contributors to such differences. Individual
diffprences in encoding strategies condition mental sets, which, in turn, influence classification-recog-
nition judgments, particularly, when stimulus conditions are not ideal. Thus, subjective expectations
must be considered. To incorporate these considerations into the simulation, the classification probability

,0 multiplied by an individual proficiency factor (provided as input) and a stochastic value is added to the
product.
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Additionally, the effects of stress are accounted for. The stress function incorporated is the same as that
which has been included in prior Siegel-Wolf models. Essentially, the stress function provides for an in-
crease in accuracy as stress increases up to a point (called the "stress threshold") and then a decrease as
stress goes above the operator's stress threshold (provided as input). The main routine tracks the operator
stress.

CLASSIFICATION TIME
Accuracy judgments, however, are not sufficient in assessing the adequacy/efficacy of a classification-
recognition scheme strategem in a practical simulation model. Information also needs to be processed
speedily promptly without inordinate delays. Thus, time is a correlative variable with accuracy in the
classification-subroutine.

In general, information processing variables that affect classification-recognition accuracy by way of
ease or difficulty of completing the task can intuitively be expected to contribute to the time required for
the reduction of uncertainty. If deliberation over response alternatives because of impediments to cog-
nitive clarity becomes imperative, the classification-recognition response can only be delayed. Dumas and
Gross (1973) reported that response times increased as accuracy was emphasized.

More specifically, illustrative investigations to support the contention of some covariation between time
of classification-recognition and information processing variables associated with accuracy of classi-
fication-recognition are provided by Dick (1971 . Dumas and Gross (1973), Dumas et al. (1972), Checkosky
S(1971), Nickerson (1967, and Nickerson and Feehrer (1964), who were principally concerned with the mul-
tidimensional aspects of stimulus-patterns, critical to effective categorization of stimulus-patterns.
Kirsner (9173) observed that physical similarity of verbal stimuli facilitated the reduction of recognition
time. Dick (1971), Hyman (Dick, 1971), Nickerson (1967), and Nickerson and Feehrer (1964) confirmed
that response time increases with the number of features/attributes intrinsic to a pattern. "...it is appar-
ent from the data that the number of attributes that the situation required be attended to did in fact af-
fect categorization time, even if not in a simple and entirely consistent way" (Nickerson, 1967, p. 218).
Fitts et al. (1956) proposed that recognition time is less for random patterns than for constrained/struc-
tured ones.

In the photointerpretive situation, MacLeod (1964) reported a rather extensive investigation in which rec-
ognition time was investigated as a function of identification completeness and identification accuracy.
The results of MacLeod also indicated a relationship between his completeness dependent variable and
response time.

Time for classification can accordingly be considered to be a function of most, if not all, of the variables
which affect accuracy. Abstracting from MacLeod's data, the following effects of image variations on
identification time may be suggested:

Variable MacLeod Figure No. Range Effect (%)

Contrast 3 10 to 20
Resolution 8 10 to 20

Scalp 13 10 to 20
Complexity 16 50 to 75

Moreover, the MacLeod data suggest viewing time for recognition to be between 120 and 200 seconds-de-
pending on image quality.

The time calculation is initially drawn from and based on the accuracy calculation. Recognition accuracy
values in the range of .34 to 1.00 may be anticipated from the model. MacLeod reported recognition times
of 120 to 200 seconds. Accuracy is treated as a reflection of image quality (contrast, resolution, scale,
complexity.) Accordingly, the logic first rescales the previous accuracy calculation (which varies between
.34 to 1.00) to an image quality scale which varies between zero and one. After making the trans-
formation, a random deviate between--0.1 is added to the transformed score. This reflects the accuracy
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range generally found by MacLeod to reflect individual image quality effects. Next, recognition time is
calculated. This time varies with the derived image quality value from 120 to 200 seconds (drawn from
the MacLeod time as a function of scale image quality, and display method data; his Figure 10). Finally,
this time value is multiplied by the input operator proficiency value to account for operator proficiency.

CLASSIFICATION SUBROUTINE IMPLEMENTATION
This section presents the programmatic requirements for implementing the techniques, described above,
into an operational classification subroutine. The subroutine will perform the classification and related
functions for a single target for each subroutine entry.

The input data required by the subroutine are shown in Table 4-2. It is assumed that a number of prim-
itives (equal to NOPRIM) have been selected. The image "generated" may be identical to one of these
primitives (with probability = P1). Operator speed, current stress, and stress threshold, previously utilized
in the scan, detect subroutine, are also required. The data for specific primitive targets (item 6 or Table 4-
2) includes four items (code IC = I through 4) obtained by counting the number of strokes, and selecting
the proper characteristics from Figure 4-3 for each primitive.

The visibility indicator (Table 4-2, item 8) is the same as is used in the scan, detect subroutine. Item 10 of
Table 4-2 consists of a 4 x 8 table of cumulative probabilities of each possible value of deviations (code
differences) between the current target and a primitive. Item II includes a 30 element table of constants
used to determine the initial classification probability.

Figure 4-10 shows the detailed logic flow of the subroutine. Each major logic element box contains a brief
description of the operations required as well as an analytic statement of the programmatic procedure
necessary to implement the functional element. Variables used in these calculations, not listed in Table 4-
3 (inputs) are shown either in Table 4-:3 (subroutine outputs) or in Table 4-4 (other variables).
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TAB~LE 4-2

Inuit No. Input Data Name

1.'roha hitit of* gen eraitin g one ,f t he prima! i es withoiut change P]

2. Nurnber of diffe'rent prot itYvPe IMage's NOPRIM

O perator spee~id l'roficie(ev F(niia.~Ilstr lwrJM)

4. Current stress value of'operator M I minimum STRtMJ

5. Stress threshold value of operator M,STRM(M) > STIRIM) STRMIM)

6I Data fi ir all pri miti ve targets I)ATAtI.O

IC Data
I Numbher of st ro kes
2 Length if primnary' stroike

2 Angle codle of primary stroke
4 Curvature code of primary stroke

7. Numbler if t argets to he classiflied IT

8.6 Target visibhilityv ind icato r It - not visible now VI Tt
I - visible I st time
2 - visihle. not 1 st time

9.Type o~f target. A primitive number from IP=-I to IP=OPRIM for every tar-
get IT IT(IPt

10t. Cumulative Probahility for Number of Deviations between Current Target
and l'rimiti ye

Number of Numnhir of Length of Angle Code Curvature Code

Unit Stroke's Primary of Primary of Primary
Diffierentces Stroke Stroke Stroke

Cum. Proh. Cum. Prob. Cum. Prob. Cum. Prob.
Prob. (PDNS) Prob. (PDLS) Prob. (PDAC) Prob. (PDCC)i

0t 0.34 tt.34 0.28 0.28 0.46 0.46 0.55 0.55
1(0.20 11.54 0.16 6.44 0.14 0.60 0.20 0.75

2 (0.16 0.71) 0.14 6.58 10.12 0.72 0.15 0.901
31 0.12 01.82 0.12 0.70 0.10 0.82 0.10 1.0
1 (0.08 11.91) 0.10 0.80 0.08 0.90 - 1.0

5 0.1)4 0.94 0.08 0.88 0.06 0.96 - 1.0
6 0.1); 1.97 0.06 0.94 0.04 1.0 - 1.0
7 (0.0)2 (.99 10.04 (1.98 - 1.0 - 1.0
84 0.01 1.0 0.02 1.0 - 1.0 - 1.0

iI. Data for initial classification probability (See Figure 4-5)

Number of .Strokes Constants Requi red
KI(Strokes) K2(Strokes) K3 (St rakes)

(10.750 0.2.50 -0.050
2 0.600 0.100 -0.050
3 0.50( 0.100 -0.050
4 0.425 0.075 -0.025
5 04375 0.075 -0.025
6 0.375 0.075 -0.025
7 0.425 0.075 -0.025
8 0.500 0.100 -0.050
9 0.6(10 0.100 -0.050

it) 0.7.50 0.250 -0.050
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TABLE 4-3

SUBROUTINE OUTPUTS

Description Data Name

1. Performance time of operator classification task (secs.) PT

2. Results of classification RCC

S-successful
U-unsuccessful

3. Detection, classification status for target IT DCS(IT)

1-no action yet
2-detected
3-classified successfully
4
5-used by scan/ detect subroutine
6
7-classfied unsuccessfully

4. Problem flag PF

1. visibility indicator not set
2. target not previously detected

TABLE 4-4

CLASSIFICATION SUBROUTINE-OTHER DATA ITEMS

RY - pseudo random number equiprobable in the interval 0-1, different number each time called.

ICP - initial classification probability

FCP - tinal classification probability

l)PNS - deviation from the primitive in no. of strokes

DPLP - deviation from the primitive in length code of the primary stroke

I)PAP - deviation from the primitive in angle code of the primary stroke

DPCP - deviation from the primitive in curvature code of the primary stroke

D - degradation in classification probability due to deviation in no. of strokes

1)2 - degradation in classification probability due to deviation in length code

D3 - degradation in classification probability due to deviation in angle code

D4 - degradation in classification probability due to deviation in curvature code

STROKES - no. of strokes in target to be classified

TlT2,T3 - temporary variables

IT - Target number
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As indicated in Figure 4-10, two checks are made at each entry to the subroutine. The first is a test to
verify that the target is still in view. This is accomplished by a check of V(IT), a variable maintained by
the MAIN program (see Table 4-3, item 8). If V(IT) has a value other than 1 or 2, it is not visible cur-
rently. The flag indicator PF(1) is set to 1, and control is passed back to the MAIN program. The second
test is to verify that the current target (IT, Table 4-3, item 7) has already been detected. If not, the flag in-
dicator PF(2) is set to one and control is passed back to the MAIN program.

Next, whether or not the target to be processed is to assume the exact pattern characteristics of a proto-
type is determined. This is to occur with probability P1. If this condition occurs (i.e., if a pseudo random,
number RY, equiprobable in the range 0-1 is less than P1) then all four potential deviations from the pro-
totype (i.e., number of strokes and length, angle and curvature of the primary stroke) are set to zero. If
the current target is not identical to a prototype, these four deviations, DPNS, DPLP, DPAP, and DPCP
are calculated. DPNS is determined by comparing the value of another RY with the set of eight PDNS
values (Table 4-3, item 10). DPNS is set equal to the smallest number of unit differences (IU) for which

- ,. PDNS (IU) RY. The number of strokes (STROKES) assumed to be comprising the target image is deter-
mined next by randomizing around the number of strokes given as input for the type of target selected
Isee Table 4-2, item 6, i.e., DATA (IP, 1)], given that target IT is a target like the primitive identified as
IT(IP) (see Table 4-2, item 9).

The initial ralue of the probability of a correct classification (ICP) is calculated starting at circle "b" of
Figure 4-10 and the final value of the probability (FCP) is determined at circle c." The first selected val-
ue for ICP is determined as shown in Figure 4-5 as a function of STROKES. Following this, the four val-
ues of degradation (DI through D4) are calculated in accordance with Figures 4-6 through 4-9, re-
spectively. In each case, an appropriate band of uncertainty is incorporated using new values of RY.
These four deviations are then each subtracted from ICP to yield a new ICP value. The final FCP is cal-
culated as a function of operator stress, STR(M), operator proficiency, F(M) and operator stress threshold
STRM(M. In doing this, a temporary variable T3 is determined to incorporate the effects of F(M) with a
band of uncertainty of width 0.2 and to incorporate the effects of pattern context with an uncertainty
band of 0.15. Here, a random deviate RD is used for the F(M) effect. RD is a normally distributed vari-
able with mean zero and a sigma of one. The effects of stress and stress threshold are then incorporated
as shown in Figure 4-11. If there is no stress (i.e., STR(M) = 1,) the value of T3 becomes the final proba-
bility FCP. If there is stress build-up but the threshold is not exceeded, then the value of FCP increases
linearly beyond the value of T3 such that when stress reaches the threshold, FCP assumes a value half-
way between T3 and 1 (certain successful classification). If the current stress exceeds the threshold, then
FCP starting at a value of T3 begins to decrease (Figure 4-I1) linearly until (when stress equals one
greater than the threshold) FCP equals T3 less the same value used above (halfway from T3 to 1). Fur-
ther increase in stress has no additional effects.

Given the probability of successful classification, the subroutine then determines success or failure by
comparing this probability FCP with a new RY. If RY is less than FCP, the classification is successful

and the results of classification code (Table 4-3, item 2) is set to S and the detection/classification status
code ( Fable 4-:, item :1 is set to:1 (success). For failure RCC = U and DCS(IT) = 7.

The last calculation, performance or classification time is made in units of seconds using the trans-
formations shown in Figure 4-12. Values of FCP from 0.34 to 1.0 are transformed into a variable T4 hav-
ing a range from 0 to I while superimposing a randomization effect at a level not to exceed±--0.l [Figure
4-12(a d:

FCP-0.34
T4 - -0.1 + (0.2) RY

0.66
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The variable T4 (suitably limited between 0 and 1) is transformed into the range of performance times
from 120 to 200. This is shown in Figure 4-121b) and is effected by calculation:

PT z 200-80 (T4)

so that low probabilities of success FCP correspond to large performance times and vice versa.

DISCUSSION
Accuracy of classification/recognition of pictorial images is probably conditioned by such information
processing variables as were included in the present simulation. A body of literature supports this con-
tention. However, the question of the veridicality of the simulation must remain open because of the cur-
rent state of the pattern recognition science.

That a dynamic processing does occur is not controverted. The operations proper to it, however, are. The
dispute revolves around serial vs. parallel processing of information required for the delivery of the recog-
nition response under appropriate stimulation. According to Neisser (Reed, 1973), features of a stimulus
pattern are examined sequentially until sufficient information is on hand for rendering a decision. On
the other hand, according to Sternberg, (Reed, 1973) who adapted Donder's (Sternberg, 1969) stages of
cognitive processing, features of the stimulus pattern are scrutinized in parallel, thus achieving a syn-
thesis to facilitate recognition of the pattern. Nickerson (1967) surmised that his results were ambiguous

for defending either alternative. Reed (1973) reviewed in breadth and depth research inquiries pertinent
to this issue, without a firm resolution for one or the other position.

Expediency, therefore compels a pragmatic choice. Predictors of a response are arbitrarily, but not capri-
ciously, selected. Empirical testing follows to determine the validity of the selection. "...one has a hunch
as to what features of a pattern an organism pays attention to, the appropriate measurements are taken,
and a test-an experiment or a computer run-is made to see if they predict the response" (Zusne, 1970,
p. 77). In this instance the decision was partial to a serial sequential processing system because of its
flexibility.

By way of conclusion, some contrasts between a computer simulation model for the recognition of picto-
rial images and its human counterpart need be considered. According to Zusne (1970), "The problem and
it remains the crucial problem, is to formulate rules of decision in the comparison of the input infor-
mation with some existing standards in the machine's memory. This involves (a) the specification of the
structural elements in the pattern that must be used in the comparison, (b) the specification of how the
comparison is to be done, and (c) the incorporation of learning rules to allow for the variations that are
always encountered in a given pattern.. .Since the information that is fed into a computer must be exact
and specific, the programmer must have an exact idea ;)f the nature of discrimination and recognition
processes, including the principle of invariance. Whether his ideas are right or wrong makes no differ-
ence to the computer, as long as they are exactly specified" (p. 75).

With respect to the principle of invariance Zusne (1970) argued that "the most important problem is the
problem of invariance. It has not been solved for pattern perception by machines... If it had, there would
be no need to write more programs... The reason is that the problem of how invariance is achieved in a
living organism is still unsolved. Indications are that much more than repeated visual experience of the
same pattern under different conditions is involved. A most important factor is kinesthetic feedback.. as
is the fact that form in everyday life is not a two-dimensional array of points but a surface or object and
is perceived under continuous series of transformations as the perceiver moves in three-dimensional
space, Reafference.. .is most certainly an essential variable contributing to the existence of perceptual in-
variance. Reafference... has not been incorporated in pattern-recognition programs in any important
sense" (p. 84).

Through learning/training predesignated responses to preselected stimuli are acquired. In a practical sit-
uation, to maximize transfer from learning/training sessions to applied situations, stimulus materials
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can be expected to be highly comparable/similar. In accord with Tulvig's encoding specificity principle,
retention and retrieval cues will be correlated. In this instance, in particular, the human operator/recog-
nizer can avail himself of auxiliary aids, like earlier photographic records and display charts, to check
the veridicality of his perception and the accuracy of his recognition judgment assessment. Uncertainty
reduction, therefore, is not contingent solely upon a here-and-now stimulus-pattern.

Unlike a computer model, which is completely dependent on the designer for the content and for rules to
be used in the selection and execution of a response, the human observer enters the learning/training
schedule with a history of variegated experiences that can be profitably used to expedite the recognition
of pictorial images. That is to say, he is not without internal resources by way of meanings, which can be
associated with problematical patterns. Initiative, tempered by discretion, can be marshalled to assess
the probability of the appropriate identification of a pattern.
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SECTION V
ALTERNATE CLASSIFICATION MODULE

Modeling the Lognitive aspects of target classification through processes involving features analysis and
scheme rules, as described in the prior chapter, is appealing because the prior model appears to be in
agreement with current theory. The prior model seems well in accord with the thinking, among others, of
Gibson and Gibson (1955), Gibson (1966). Pick (1965), Aiken (1969), Franks and Bransford (1971), and
Rosch (1973).

However, other approaches to modeling the behavioral aspects of the classification process are possible.
One variant, such as that of Sternberg (1967), involves an information processing basis and postulates a
high speed serial memory search which may be self terminating. Other, somewhat similar (Sperling,
1967) thinking postulates parallel processing with the features of each item being recognized
sequentially.

Others (Rodwan & Hake, 1964) have applied discriminant analysis while Anderson's (1971) model of the
classification problem employs cue validation and weights which represent the saliency of different cues
or features. One class of models in this area-distance models-is based on a multidimensional scaling
approach is relevant to establishing the perceptual aspects of the stimuli to be categorized, but more diffi-
cult to understand how the multidimensional scaling approach clarifies the cognitive/information pro-
cessing aspects of the classification process.

Also, the pattern similarity (distance) models have been combined with choice models. Luce (1959) pro-
posed a choice model which postulated both similarity and bias parameters.

AMBIGUOUS TARGET CLASSIFICATION
The fine resolution of targets, or potential targets on the CRT, such as those of the AN 'UPD-X system, is
often imperfect. System resolution, target aspect, camouflage, target range, and other factors may work
to cause the reflected target image to lack the features necessary for a features or a scheme analysis by
the observer. In such cases, the interpretation of an image may not depend on the objective character-
istics of the image. Such features may not be available. A method is required which will allow modeling
the classification of targets which are barren in distinguishing features. The choice model developed by
Luce (1963) and later extended by Townsend (1971) seems to provide a basis for meeting this neen.

LUCE'S CHOICE THEORY
In his exposition (Luce, 1963) of choice theory, Luce contended that response probabilities are of the form:

a[s,t(r)]b(r)
Pi(ils)

Zas,t(r')b(r')]

where:

scale a~the similarity between the presented stimulus s and the one, t(r), for which r is the correct
response.

scale b-actual responses or a measure of response bias.

Accordingly, the probability of a given classification is a function of: (1) the similarity between the
present stimulus and one which has been previously learned, and (2) the response bias of the observer.

The strength of Luce's model is that it considers both perceptual and response bias parameters. A diffi-
culty with Luce's model is that it does not state the underlying processes which account for a choice.
However, this concern is of minimal import in the present context.
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TOWNSEND'S EXTENSION
Townsend was concerned with the confusion matrix generated by visual stimuli-in his case letters of
the alphabet. He found the choice model to predict the confusion matrix (a matrix of the comparative
confusability of various stimuli) as well as an overlap activation model and better than an all-or-none ac-
tivation model.

The choice model developed by Townsend follows the formulation given by Luce and states that the
probability (Cij) of response j when stimulus i has been presented is a function of the similarity between
stimuli c and j and the bias value of the observer associated with response j. Specifically:

cij= vij B)
En nVikB k

k kk~ I

in which vij represents the similarity between the two stimuli and Bj is the bias value associated with re-
sponse j. In the denominator of the equation, the products of the similarity and bias for all responses to
stimulus i are summed.

In order to model the AN UPD-X situation within this conceptualization, the similarity between stimuli
would need to be determined for actual AN/UPD-X stimuli. Such an endeavor is not difficult to accom-
plish and the procedure would root the simulation directly to an actual scenario and to actual AN/UPD-

AX stimuli. Moreover, the similarity information would allow consideration of such AN/UPD-X features as
image enhancement and coding techniques.

Response bias in the AN, UPD-X situation could be considered to be related to considerations such as pri-
or operator training, briefing instructions, or intelligence information. For example, a system operator
who was briefed on the fact that enemy deserters have informed our intelligence that SAM sites are in an
area will be more apt to classify a suspected target as a SAM site.

We note that while such a formulation is, on the surface, free from a features analysis, the similarity
data provided by experienced operators must come from one source or another. And, probably, they will
base their perceptions on the stimulus features.

ALTERNATE CLASSIFICATION MODEL IMPLEMENTATION
For the alternate simulation of AN, UPD-X classification, we conceive of an AN UPD-X operator con-
fronted with a real time situation display on which he sees one or more figures called targets or stimuli.
For the short time period which the subroutine simulates, this designated operator has no responsibility
other than correct identification of the stimuli presented. This subroutine's goal is to simulate the oper-
ator in his classification of these targets-one target for each entry of the subroutine. During this pro-
cessing, he will make a selection (here called a response) from among one of the 20 allowable types of tar-
get. Th- simulatiin will 'determine" the validity of his selection and calculate the elapsed operator
performance timt.

Accordingly. the alternate classification model is designed to yield the results of classification (correct or
inc(rr, cit. based on cla.,sification probability, and a classification time when degraded (featureless) stim-

ih irs, mr),v.,l The, two output features, are common to all modules of the present series.

AT -o-r- ,vw of the alternate, target feature free classification subroutine is presented as Figure 5-1. Rela-
iv. ; i r,. .t classification correctness, the subroutine follows Townsend's conceptualization.

A, ,,,, to T,,wnsend's conceptualization of choice theory, the probability of response to a stimulus is
,vn.t on stimulus similarity and response bias. The subroutine calculation is based on an input ma-

t...h represents the perceived similarity 'freedom frorn confusion, among the targets which may be
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of interest to the classifer. Up to 20 types of stimuli are allowed. Examples of stimuli are "tank," "air-

craft." and the like. A simplified example of a similarity matrix, Vij, for three real targets and noise (four

targets) follows:

Target Type
A B C D

(Noise)
A 1.0(0 .75 25 S5
B .75 I 00 .60 .25

Target Type C .25 .60 1.00 .10
1) .85 .25 .10 1.00

(Noise)

in the preceding matrix, diagonal elements are unity since each target type is obviously similar to itself.
Also, stimulus A possesses high similarity to noise (0.85) and may be thought of as a camouflaged target.

The second required input is a response bias vector, which will be provided by the input analyst. Re-
sponse bias values can range from zero to one. Zero indicates no bias for a given response to a stimulus.
A response bias value of unity indicates a very high bias for a given response to a stimulus. For the four

targets of the prior example, the response bias vector might appear as:

Response
a b c d

(Noise)
Bias .35 0 .25 .50

This distribution would represent a very conservative classifier, i.e., one who tends to favor responding
noise rather than making a mistake, and one who rejects the possibility that stimulus B may appear.

With these two input data sets, a response probability matrix, Cij, is generated using Townsend's formu-
la (box 1, Figure 5-1). For the sample data presented above, the matrix appears as:

Stimulus
A B C D

(noise)
a .42 .49 .23 .36
b .00 .00 .00 .00

Response C .07 .28 .65 .03
d .51 .23 .13 .61

(noise)

The matrix is read as: the probability of response a to stimuls A is .42, etc.

Now, the effect of operator ability is superimposed on the matrix (box 2, Figure 5-1). To this end, the cor-
rect choice matrix probability is increased or decreased proportionally in accordance with the simulated
oper-itor's F (proficiency) value and the other matrix values are adjusted to compensate for the increase
(or decrease) in the correct choice probability. This is accomplished by taking the product of operator

speed. F and each element of the response probability matrix to yield a modified matrix Cij:

Ci; -F(Cij)

I, r ,t .tep (box 3. Figure 4-1), calculates which response is selected.

Gi'- *ie kn,wn (correct) stimulus, (*. provided as qubroutine input bh the MAIN program. consider the

c,,--i.,nding c(,lmn of the new response probability matrix, Cij, i.e., T ,j. Those response probabilities
ir- hen :zrnuilated in order. Using the prior sample dita iif Ft',mulwk P is ,ulccted
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and C Bj c /.0
a 239)

Then the cumulative row vector is:

(4)
A pseudo random number, equiprobable in the range 0 to 1, is then obtained and multiplied by the last
(highest) such value, 1.0. The operator response (an integer response number) is then selected as the
smallest row number for which the row vector element exceeds the product. For example, a random num-
her of 0(.58 will result in a selection of response row 3 since 0.49-<0.58-<0.77.

Having simulated the selection of one response, the selected response is compared with the "correct" re-
4L sponse, also provided as input by the MAIN program, in order to determine the simulated outcome of the

* classification-either correct or incorrect (box 4, Figure 1).

Note that the final choice may be: "noise" when a target is correct, target when "noise" is correct, or a
* misclassification.

CLASSIFICATION TIME
The prior logic provides information and module output relative to the classification choice and its cor-
rectness. The decision time logic is based on a separate logic which parallels, to some degree, the logic for
the prior classification subroutine. Within the present module, classification time is based on stress, prob-
lem complexity, a basic time for making a classification in an N choice situation, and the number of tar-
get options available.

Stress is assumed to be related to both problem complexity and the number of response options available.
Essentially, the decision, in which the correct response choice probability is significantly greater than
other response choices, will impose less stress on the simulated AN/UPD-X operator then the decision for
which the choices are about equiprobable. Similarly, a two choice classification will impose less stress
than a many choice classification. For example, if the operator's classification requirement is to classify
targets as tanks or not tanks (two choice), the decision is probably less stressful than the decision re-
quirement to classify all vehicles by their specific type-say, tank, truck, jeep, automobile, armored per-
sonnel carrier.

RELATIONSHIPS AMONG PROBLEM COMPLEXITY, NUMBER OF DECISION CHOICES, AND
STRESS
A problem of low complexity is assumed to be one on which the correct response probability is signifi-
cantly greater than any other response probability. The highest responee probability in the F adjusted re-
sponse matrix is located and this probability is compared with all F adjusted probabilities in its row and
its column. The mean of these up to 42 ratios (Cij/MaxCij) is taken as the index of problem complexity.
High values will indicate low complexity. The relationship between complexity induced stress and classi-
fication complexity is presented in Figure 5-2. To account for human variability, the stress value employ-
ed is stochastically selected from a distribution in which the average stress value is employed as the
mean and the one standard deviation limits are those shown in Figure 5-2.

The relationship between the number of classification choices and stress is assumed to be logarithmic. A
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logarithmic relationship has often been shown to hold for psychophysical relationships. This relationship

is presented in Figure 5-3.

TOTAL STRESS
Total stress is calculated by combining the stress due to complexity with the stress due to the number of

choices available in accordance with the following equation:

Total Stress

e(2-CSTR-ASTR)

where:

CSTR = stress due to complexity
ASTR = stress due to number of alternatives

Total stress thus varies from near-zero (low stress) to one (high stress).

CLASSIFICATION TIME CALCULATION
As stated in the subsequent chapter on the decision subroutine, it appears as if decision time in laborato-
ry studies is seldom less than .50 seconds and seldom more than 4.0 seconds.

The thought processes involved in the multistage decision processes are considered quite similar to those
involved in the classification of an object from among a set of alternative choices. Therefore, the same
Monte Carlo approach as that employed for the decision subroutine is selected for classification time de-
termination here. A random number is selected from a normal distribution between .50 and 4.0 with a
mean of 2.25 (center of range) and a standard deviation of 0.6 (about one third of the range). This random
number is multiplied by the number of alternatives and by the operator speed factor to represent total
classification time. The product is treated by the percentage time increase due to stress to derive the final

classification time (box 6, Figure 5-1). The assumed relationship between stress and classification time in-
crease is presented in Figure 5-4. This time calculation parallels that included in the decision subroutine,
in that it involves the Monte Carlo factor in the 0.5-4.0 second range, the number of selection alterna-

tives, and an increase in the presence of total operator stress.

PROGRAMMATIC ASPECTS OF THE ALTERNATE CLASSIFICATION SUBROUTINE
This section presents a brief programming description for implementing the alternate classification sub-
routine, here called ACS.

Each entry into the ACS will result in the attempted classification of one designated target.

The various items of input data required by ACS are shown in Table 5-1. It is assumed that there are up

to 20 types of targets, here denoted by the subscript I, and that the simulated operator will select either
one of these or noise, (I = 21) to designate his response on the basis of the probability functions described.
The operator selected for the job of classifying the designated target is predetermined and is passed to
ACS by the MAIN program as the variable M which is used to identify the proper operator speed/pro-

ficiency value F(M) The target to be identified, IT, is similarly passed and allows the selection of the ap-
propriate value of the visibility indicator V(IT) used in the prior classification and scan/detect sub-
routines. The similarly matrix (Vij), described above, is here denoted VE(I,J) where I and J are the
indices for stimulus and response. The input parameter, ALTS, serves to indicate the number of target
types (plus 1) selected in the current simulation run and has a minimum value of 4 and a maximum val-

ue of 21. This maximum value serves as the index limit for I and J throughout the subroutine, consisting
of 20 targets and response types plus noise. The response bias vector containing ALTS elements is identi-

fied as RB(J), Jl ..... ALTS.
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Figure 5-5 presents the detailed logic flow for ACS corresponding to the global flow diagram in Figure 4-
1. The numbering scheme in Figure 5-5 follows that of Figure 5-1 to indicate subordinate processes in Fig-
ure ,5-5. Each major element of the computation sequence contains a brief plain-sense description of the
function/purpose performed by that box as well as a programming oriented description of the procedure
in terms of the various data items. All variables used in these calculations which are not listed in Table

5-1 (inputs) are shown either in Table 5-2 (other variables) or in Table 5-3 (ACS outputs).

TABLE 5-1

ALTERNATE CLASSIFICATION SUBROUTINE INPUTS

1. Operator number for the operator assigned to classify M

2. Operator speed (proficiency) F(M)
1:nominal; :faster; L_ 1 :slower

:3. Number of the target to be classified IT

4. Correct number for this target type (answer) ITC

5. Visibility indicator for target number IT. V(IT)

0 - not visible now
1 - visible first time
2 - visible, not first time

6. Similarity matrix containing values for the similarity of appearance between each
target type and all others and with noise VE(I,J)

7. Resporse bias vector RB(J)
0(no bias) to 1(high bias)

S. Maximum number of target types plus 1 = number of alternatives plus 1 ALTS
2 1!__ALTS -4

9. Detection 'classification status DCS(IT)

I - (not applicable to this subroutine)
2 - target detected
3 - classified successfully
4 - passed to other operator
5 - active

6 - failed to detect
7 - classified unsuccessfully
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TABLE 5-2

OTHER ACS SUBROUTINE DATA ITEMS

Values

Index for stimulus target types, 1..., ITAR I

Index for response target types, 1,.., ITAR J

Simulated target type selected by operator ISTAR

Stress due to complexity CSTR

Stress due to the number of alternatives ASTR

Pseudo random number, equiprobable in 0 to I range RY

Random deviate, a number selected from a normal distribution RD

average = 0, sigma = I

Random factor used in classification time calculation RF
-t

Toal operator classification stress STR

Response probability matrix, Cij, per Townsends formula RPM(IJ)

(olumn vector used to cumulate RPM column entries COL(I)

Largest value in RPM(I,J) matrix RPMMAX

Complexity of classification CPLX

Percent time increase due to stress used in classification time calculation PTI

TABLE 5-:3

ACS SUBROUTINE OUTPUTS

I Performance time of operator classification task CTIME

2. Results of classification RCC

S - successful
U - unsuccessful

3. Detection 'classification status I)CS(IT)

:3 - classified successfully
7 - classified unsuccessfully

4. Problem flag PF

I - visibility indicator not set
2 - target not previously detected
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The subroutine operations begin with the reset of the problem flag, PF, and the conduct of the two che(ks
utilized in the prior classification subroutine. The first tests to verify that the specified target number. T,
is currently in view by the operator. The second test verifies that tht detection sequence has, in fact, been
performed on this target. If either error condition exists, PF is set and the control is returned to the
MAIN program.

Normally, however, the processing will proceed to calculation of the response probability matrix,
RPM(IJ), using Townsend's formula, followed by the modification of each of the elements in RPM(IJ) us-
ing the selected operator's speed/proficiency value F(M) as a multiplier as shown in boxes 1A and 2A of
Figure 5-5.

In box 3A, a column vector ('OLi I is defined c',ntatIIIg fr each element the sum of all elements in prior
rows. The last (ALTS) value of this ec't-r %kill e unitt. neglecting round off truncation errors. Multi-
plying this last element by HY. a pse.ud, ratd,,m tounber in the I) to I range, will enable simulation of
the target selection process in accordatni %%ith hi pi hahilities represented by the elements in COL(I).
The target selected, called ISTAR. is (it sriitlh.t I ihi, vt exceeds RY( 'ON(ALT).

If this target selected is, in tat, tti. ,n,. d.jgi);jt.d I paramnetir input to be the correct one, ITC, then

appropriate indicators are set in 1),,\ IA t, ri-,ri ticc..ess in the classification process. Otherwise a fail-
ure is similarly indicated

.4L

Next, in boxes 5A. -MB, ,( . and -1. 1h,, ,. to itn us ,,v'i.d with complexity and stress are implemented.
A series of ratios. 2 ALTS in numnir, irf, t-t.-rmnie., using th. elements in the row and column of the re-
sponse probability matrix which has tht, I irgesi #I feInt -1 The average of these ratios is called complexity,
('PLX, and is used as shown in 1-igur. I-' r.-t.rtnin, the stress (ue to complexity, CSTR. The stress
due to the number 4f alternativv .VSTR i- di-irmined per Figure 5-3 and combined with CSTR in box
51) to obtain t total \alu,, hr stri-s. ,,I th. -l.a.iiti, atiw ,,pvrator

The last box, 6A. (1 F"igur,- -- s.t ,,w.- im ;,eoent it or of the lassification time calculation as a func-
tion of:

1) a random dev-iat. RY us.i t,, Azen,-ratet, f;it,r R. limited to lie between 0.5 and 4.0 seconds. RF
represents the unit lassif ,ati.,n tnm,

(2) the number of altrnati\ -,. ALTS " hi-h represents a measure of the simulated operator's choice
space

(3) a factor, Tl'I, which can it'uenco- an i wr ,-as. in classification time as a result of the total stress
(CSTR) previously calculated N, ,-;-t of this factor will he observed if the AN, UPI)-X operator is
in a no-stress state. Per Figure 5-4. in increase f iover 2-t" is possible for exceptionally high val-
ues of stress ISTR- I)

(4) the operator speed proficiency value. scaled so as to be a multiplier. Fast operators will have pa-
rameter values F(M) less than unity thus resulting in a linear reduction in classification time com-
pared to the nominal operator for whom F(M}: 1.

Calculation of the classification time. CTIME, in seconds then completes the ACS processing and control
is returned to the MAIN program, leaving in common storage the resultant output data shown in Table
,5-3.
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SECTION VI
DECISION MODULE

S-ect!(n presents the computer module for simulating dec-,on tsks within the AN UPL)-X -.%stem.
1: - nodule's logic follows from Simon and Newell's prolem solving theory, Simon & Newell, 1971;

Newell & Simon, 1972), but expands on that conceptuaiization by considering task complexity, decision
Utility. operator ability, stress, and Bayesian concepts. Here the AN UPD-X operator to be simulated is
iLe problem solver to whom the Simon & Newell theory is applied. in short, the Simon-Newell theory de-
scri es the problem solver as stepping, node by node, through the problem space until a solution or final
1ecision is reached. The node stepping represents the decision process where each step involves a datum

.;!et .ion, analysis, and evaluation and the problem space represents the size and structure of the deci-
sion task. This stepping process of problem solving has been observed and simulated in at least three
tvpes of problem tasks: (1) chess playing, (b) cryptarithmetic, and tc) discovering proofs in logic (Newel]
& Simon. 1972). Similarly, Laming (1968) described and presented evidence for and described a "random
',:Ik mod(el" ot the decision process.

THE DECISION PROCESS
l)ecison making concerns the choice between two or more alternatives; it involves such processes as ob-
servation. 'tougit, andt respor se on the part of the AN tJPI)-X -perator.

In making a irational) decision, a person: (a) searches for and collects information through observation.
it Im analyzes the information to compare alternative action avenues, and (c) chooses an alternative based
on some criterion or goal of the decision task. The decision process, in short, involves information pro-
cessin. and fits the familiar S-O-R paradigm: the stimulus is the information observed, the decision

V",I er an;ilyzes and evaluates the information, and the response is Lhe choice among the alternative re-
iponses available to the decision maker.

!'aters( n (1972) more formally described decision making as follows:

"lecision-making implies a decision process, a sequence of four stages, stimu-
lation which becomes Information, assessment of the information to present
('onclu.sions or alternatives for action, selection of an alternative which be-
cromes a commitment to action and so a Decision proper, and, finally, the
stage (if Execution requiring decision on how to carry out the commitment
(Paterson, 1972. p. 7)."

The decision subroutine directly involves Paterson's first three steps- .1J cmation, conclusions, and deci-
the fourth step, execution, is more related to the event simmator.

The decision process has been previously modeled in a number of different ways. One type of decision
model has simulated decision making as a constrained random-although not haphazard-process. Such

:,rocess is involved in Laming's random walk model (Laming, 1968) and was used to simulate decision
tasks in an early version of the Siegel-Wolf model (Siegel & Wolf, 1969, p. 28).

A second type of decision subroutine represents a more rational process; it involves a choice among alter-
natives based on the expected utility or value of the alternatives. In the optimal situation, on the basis of
data collection and analysis, the decision maker selects the response alternative which possesses the
greatest expected utility or payoff. Most mathematical theories of decision making are based on the ex-
pected utility principle (e.g., Thurstone, 1927; Coombs, 1958; Luce, 1959). This maximum utility decision
process was incorporated into a later version of the Siegel-Wolf digital simulation model, (Siegel, Wolf,
Fischl, Miehle, & Chubb, 1971).

A third type of decision subroutine might be involved if the decision task involves probabilities which are
modified as information is progressively obtained. Faced with a decision, the decision maker collects, an-
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alyzes and evaluates information, and attempts to solve the problem by selecting the correct response al-
ternative on the basis of probability based information. Simon and Newell's (1971) problem solving re-
presentation, and Bayesian approaches (e.g., Edwards, 1954, 1961) incorporate probability concepts.

The present decision simulation is primarily concerned with a probability oriented decision process. The
module is based on Simon and Newell's (1971) problem solving approach and Bayesian processes which
are suitably modified by complexity, utility, stress, and individual competency considerations. The end
result of the simulation is an indication of. (1) the correctness of the decision, and (2) the time required
for decision making. The incorporation of decision complexity, ability, and stress variables is justified by
the general concept that performance is dependent on characteristics of: (a) the task itself, (b) the human
performer, and (c) the task environment.

SIMON AND NEWELL'S PROBLEM SOLVING MODEL
Based on over two decades of research. Simon and Newell developed a theory which attemt todecb
and explain the cognitive processes in problem solving. Their description of the problem solving pro-
cesses portrays the problem solver as an information processor making choices among alternative routes
in a heuristically governed search for the problem's solution. Simon and Newell (1971) described the hu-
man problem solvei as a:

... serial information processor with limited short-term memory [whichl uses
the information extractable from the structure of the space [ perceived problem
task]I... to evaluate the nodes [observed information] it reaches and the oper-
ators [data analysis] that might be applied.....The evaluations are used to sc-
lect 1partial decisiwi[ a node and an operator for the next step of the search.
Operators are usually applied to the current node [state of knowledge] but if
progress is not being made, the solver may return to a prior node that has
been retained in memory (page 15:3).
(parenthetical material added)

THE DECISION TASK
Utilizing the Simon and Newell stepping representation of decision making, the present decision sub-
routine was based on up to five decision alternatives, (one and only one of which is correct) and six nodes
(for a total of 11 states). As represented in Figure 6-1, the decision task may be viewed as a hexagonal
structure.

The structure may be initially entered at any node. Direct entry to a solution state is not permitted. From
any node, 11I choices are available: stepping to one of the other five nodes, remaining at the node, nr stop-
ping to a solution state. Stepping to a !'olution state completes the stepping process.

Two output measures are produced by the decision subroutine: decision time and decision success. D~eci-
sion time is a function of task complexity, stress, and the number of steps to reach a solution, where each
step equals a unit of time. The minimum time situation occurs when reaching a decision state takes only
two steps (start to node and node to solution state). Although the decision time maximum is theoretically
indeterminate because it is possible for the stepping process to continue ad infinitum, a maximum num-
ber of steps has been incorporated for programmatic practicality.

Given a correct solution, decision success is determined by matching the solution reached (via the step-
ping process) to a given (subroutine input) correct solution.

Within the step process, the step probability values, initially supplied as subroutine input, are affected
by: (1) operator ability, (2) utility, and (3) a Bayesian process.

OVERVIEW OF SIMULATION PROCESS
An overview of the simulation sequence is presented as Figure 6-2. As shown in Figure 6-2, the AN. UPD-
X decision task simulation starts with anumber of input data items. After input and operator selection,
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TO ANY
OF 6 NODES (TAT
a.. f

LEGENDLIZ = DECISION ALTERNATIVE OR SOLUTION STATE

- VALID DIRECTION(S) OF DECISION MOVEMENT

0= NODE

FIGURE 6-1. PARTIAL REPRESENTATION OF A FIVE-SOLUTION. SIX-NODE PROBLEM
REPRESENTATION.
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the step probabilities are first adjusted for operator ability and utility. Next (following resets), the deci-

sion implement step is taken. If a decision state is reached, the correctness of the decision is determined

and the simulation proceeds to the decision time calculation sequence iboxes 9 through 12, Figure 6-2). If

no decision state is entered, the input probability matrix is altered by a Bayesian process and a proba-
bility ratio required in the later complexity calculation is obtained. Then, performance of the next step is

simulated, and the decision-no-decision check is again made. This process continues until a decision state

is entered, or until the number of steps has reached the prespecified limit. The details of the decision

making subroutine are described below, and in the section on the programmatic aspects of the

subroutine.

DECISION SUBROUTINE INPUT REQUIREMENTS
The input requirements (box 1, Figure 6-1) for the decision subroutine are:

1. node to node movement probability matrix, standstill probability, and node to decision probability

2. identification of the correct decision alternative

3. goal importance matrix

4. matrix of effects of each course of action on goals

5. entry node probabilities

6. operator ability level (speed/ proficiency)

7. maximum number of decision steps permitted

8. identification of operators involved in this decision.

An example of the composition of the node to node, node to decision, and standstill probability matrix is

presented as Exhibit I. The Exhibit I matrix is not symmetrical and the column sum must equal one. In
the absence of other information, the correct decision alternative may be arbitrarily selected by the ana-

lyst prior to data input.

The goal importance matrix and the matrix representing the effects of each course of action on the goals

are discussed in a subsequent section.

Equiprobable entry node probabilities may be employed in the absence of other information.

DECISION MAKER SELECTION
If there is more than one person involved in the simulation, the decision maker to he simulated is select-

ed (box 2, Figure 6-2). If this information is not specified by the MAIN program, the ANi UPD-X operator

in the simulated group having the highest speed/ proficiency factor is selected as the decision maker. In

the case of a tie in ability, the choice is made by a random process.

ADJUSTMENT FOR OPERATOR ABILITY
The input step probabilities are then adjusted for ability of the AN/UPD-X operator (box 4, Figure 6-2).

Operator speed/proficiency is a multiplicative factor and is treated here in the same manner as in the

other subroutines. Average ability is 1.00 and such a value has no affect on the input probability matrix.
Decision maker speed/proficiency values less than 1.00 (greater speed/proficiency) cause an increase in

the input probability sets for moving from any node towards the correct solution along with a cor-

responding decrease in the probability of moving toward the wrong nodes. If the decision maker's speed/

proficiency, however, exceeds 1.0, then the probabilities of making the correct decision are decreased and

the other probalilities are increased accordingly. Accordingly, in box 3 of Figure 6-2, the input proba-
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bility matrix and the starting state probabilities are first adjusted for operator ability. Note that, at the
conclusion of this adjustment, the column sums are still equal to one.

ADJUSTMENT FOR UTILITY
Having revised the input probability matrix for operator ability, the adjusted matrix is then revised for
the utility of the various decision alternatives. The best solution is not necessarily the solution with the
highest probability. The utility adjustment is performed on the basis of two sets of input data: (1) im-
portance of the decision on up to any three preselected mission goals, and (2) the effects of each course of
action on the goals (there are five of these). Sample data for these are shown in Table 6-1.

The utility calculation is performed as the result of a set of matrix multiplications. Consider three goals
-* and five alternatives. The importance of the goals may be represented by a goal importance vector such

as that which is shown in Table 1(a) while the effects of each course of action on the goals may be re-
presented by an effects matrix such as that shown in Table 1(b).

The utility of each decision state may then calculated as the vector product of the goal importance vector
and the vector for each alternative. For example, the calculation for the utility of the third alternative is:

V3  1.4 .5 .11
.

.31 as shown in Table 6-1(c)

Once the utility of each decision state is calculated in this way, the lowest decision alternative is assign-
ed a weight of one; other decision alternatives are assigned weights in accordance with the ratio of their
utility to the utility of the lowest alternative. The assigned input probabilities of moving to a decision al-
ternative as previously modified are then altered by these weights. This is a direct multiplicative process.

PSij = KixPSij

where:

PSij = the weighted stepping probability of the ith node

Ki = the utility of the ith solution state

PSij = the modified starting probability of the ith solution state of ijth node.

The weighted stepping and entering probabilities are proportionally adjusted to allow the sum of the
probabilities to equal one. To this end, each weighted probability is multiplied by the sum of the original
unweighted probabilities for the weighted states. Then, this product is divided by the sum of the weighted
probabilities. This reads:

AUPSij = (PSij x XWPSij)/ £PSij = WPROB

where:

AUPSij = altered utility weighted starting probability of the ith solution state or ijth node.

LWPSij= sum of unweighted starting probabilities for weighted states.

ZPSij sum of weighted starting probabilities.
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EXHIBIT I

EXAMPLE OF INPUT MATRIX

Probability of Movement From

a b c d e f Start

a 0.1* etc.
b etc.
c etc. etc.
d etc. 0.3*

e etc.
f etc.

To
A 0.05* etc. 0
B etc. 0.3* 0
C etc. etc. 0
D etc. 0

* E etc. 0

SUM 1.0 1.0 1.0 1.0 1.0 1.0 1.0

*Subsequent text explains these entries

The utility weighting is not applied to the starting state probabilities because it is assumed that there
can be no utility until after the first step. Conceptually, no information is available to the AN, tTPD-X
decision maker until after the initial step is completed.

STEP PROCESS
Within the decision subroutine, Monte Carlo methods are employed to complete the stepping process (box

6, Figure 6-2). In Exhibit I, the lower case letters (a, b, c, d, etc.) represent a node. Initially entering node

d, for example, possesses a probability of .30. The standstill probability at node a is .10. All nodes have

an associated standstill probability. The probability of moving from node a to solution state A is .05

while the probability of moving from node e to solution state B is .30.

TABLE 6-1

SAMPLE GOAL AND COURSE OF ACTION DATA

Relative Goal Importance, GI(J

J 1 2 3 Sum

Sample values: 0.4 0.5 0.1 1,0
Sample goals: accuracy speed operational - (a)

capability

Course of Action Effects, CA(JIDA)

1 IDA: A B C D E Sum

1 .2 .1 .3 .3 .1 1.0
2 .0 .3 .3 .2 .2 1.0 (b)
3 .1 .2 .4 .0 .3 1.0

U I)A .09 .21 .32 .22 .17 1.0 (c)
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For example, the stepping process may run:
a-f-c-d-e-f-a-A

This decision process example took nine steps or time units where the starting state is the first step. The
entered solution state A is "right" or "wrong" as indicated by input. Other decision simulations may pro-
ceed 1, 50, 100 or some larger number of steps. As a result, a limit parameter is used to prevent too long a

sequence.

To determine which step is actually taken, a stochastic process is employed as shown in the section on

program implementation.

BAYESIAN PROCESSOR
Next the decision is compared with the input correct decision to determine decision correctness.

If the decision step results in entry into a node, as opposed to a decision state, the set of weighted step-
ping probabilities is adjusted on the basis of a Bayesian logic. Bayes' theorem represents a method for
converting a priori (probability prior to obtaining information, evidence, or experience) probability infor-
mation to a posteriori (probability after obtaining information, evidence, or experience) probabilities on
the basis of intervening information.

The following illustration of Bayes' rule is taken from Fishburn (1964). Suppose Smith opposes Jones in
an election with three voters. If x denotes the number of votes received by Smith (x = 0, 1, 2, 3), 3-x is the

number of votes Jones receives. Before the election, based on his knowledge of Jones and the voters,
Smith arrives at the following a priori probabilities for x.

P(x z 0) = 1/25,
P(x z 1) = 8/25,

For Smith:P(x = 2) = 14/25,
P(x = 3) = 2/25.

Suppose there is one ballot to be opened, and that ballot is for Jones. Let J 1 be the event in which the first
ballot is for Jones. The conditional probabilities of J 1 , given x 1 are:

P(J 1  x = 0) 1,
P(J x = 1) = 2/3,

For Smith:P(J1  x = 2) = 1 '3,
P(J1 x:3)=0.

Smith can now compute the a posteriori probabilities (P(xYJ1) using the following relationships.

P(xJ 1 )P(J 1
) = P(J I I x)P(x),

P(J 1)  E P(J! Ix)P(x) = 1/25 + 2/3(8/25) + 1/3(14/25) + 0(2/25) = 33/75,
x

to yield P(x = 01JI ) = 3/33,
P(x = I IJ1 ) 16/33,

P(x = 2J 1 ) = 14/33,

P(x : 3J 1) = 0.

After each step of the decision process in the decision subroutine, the current node to node movement ma-

trix is updated on the basis of Bayes' rule (box 7, Figure 6-2). After the first step, the input matrix consti-

tutes the a priori information. After subsequent steps, the updated input matrix of the prior step is em-
ployed as the a priori matrix. Accordingly, the a priori matrix is successively updated to an a posteriori

matrix and the a postriori matrix for one step becomes the a priori matrix for the next step.
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In order to apply Hayes' rule after each step, one must know how much information is gained at vach
step of the decision process, i.e., the conditional probability after each step. To this end, before the !iav-
esian processing, each step entry (excluding initial entry probabilities) in the input matrix (Exhibit 1is
stochastically updated at the end of each step. The updating is performed by selecting a random numbt-r
between 0 and .5 from a rectangular distribution. Then, each entry in the input matrix is processed in ac-
cordance with the Hayes' logic described above. We note again that, in this application, the input matrix
represent the a priori information and the stochastically selected number represents the conditional
probability.

As stated above, each a posteriori matrix becomes the a priori matrix after the subsequent step.

DECISION TIME
The prior calculation provides output about the number of steps to the decision and the correctness of the
decision (boxes 5 and 9, Figure 6-2). The decision time determination is based on a separate logic. Specifi-
cally, decision time is based on the stress on the simulated AN/UPD-X operator making the decision, the
number of steps taken, and the problem complexity.

RELATIONSHIP BETWEEN STRESS AND PROBLEM COMPLEXITY
The stress on the simulated operator is assumed to be a function of the complexity (difficulty) of the deci-

* sion. An easy problem is one on which the a posteriori probability set for one alternate is considerably
larger than the a posteriori probability for any other alternate. In such a problem situation there is little
confusion about which way to go. The problem is said to be easy. A difficult problem is one on which

* equiprobable alternatives exist.

After each step, the ratio of the second highest to the highest a posteriori value is determined and stored.
At the conclusion of the decision simulation, these values are averaged to yield an average "omplexit ' 
value which will fall between zero and one. Figure 6-3 presents the assumed relationship between stress
and complexity. As complexity increases, stress is assumed to increase only slowly until complexity
reaches a value of 0.3. At this point, the problem's difficulty is assumed to become sufficient to cause an
increase in the rate of stress development. When the average complexity reaches the 0.8 complexity level,
the rate of stress buildup decelerates.

To allow for human and situational variability, the stress value employed is selected stochastically from
a distribution in which the average stress value is employed as the mean and the one standard deviation
limits are those shown in Figure 6-3.

AFFECT OF STRESS ON DECISION TIME
Each step of the decision process is assumed to take some time. The step time basis is drawn from a re-
view of a set of studies into decision time. The studies reviewed and their results are summarized in Tit
ble 6-2. The table includes a wide variety of studies which ranged from discrimination reaction time to
more complex decision making. From Table 6-2, it appears that decision speed in laboratory studies sel-
dom was less than .50 seconds and was seldom more than 4.0 seconds. In the decision subroutine, the
number of steps to a solution is multiplied by a random number drawn from a normal distribution be-
tween .50 and 4.0 with a mean of 2.25 (center of range) and a standard deviation of 1.2 (about one third
of the range).

Accordingly, the number of steps to a solution is multiplied by the basic step time to yield an initial esti-
mate of decision time. This initial estimate is then treated by stress to derive the final decision time. In
this manner, stress may be considered to be an intervening variable which affects decision time on the
basis of task complexity. The assumed relationship between stress and decision time is presented in Fig.
ure 6-4. Again, a stochastic effect is included.
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TABIE 6-:3

PARAMETERS AND INPUTS FX OR DECISION SUBROUTINE

1. Nodal transition probability table isee Exhibit I PROBIl)N'IDA, ll)N" 1

2. Correct decision alternative number (1-5) RIGHT

.3. Relative importance of : goals, (GIJ): , J:1.2.3 (;I(J,

4. Course of action effects CA(J.II)A)

5. Operator speed proficiency 0.'5!!F(M)1l.9 Fi(M)

Value operator speed proficiency

nominal
I .faster higher than average

slower lower than average

6. Decision maker, an operator number (integer), optionally available from
Main Program II)M

7. Maximum number of decision steps permitted MAXSTEP

. perator numbers for those operators participating in the decision task MI)ECII)EMI

* / TABLE 6-4

OTHFR DATA ITEMS

Item Data Name

Decision time (seconds I)TIME

Decision complexity ('OMPIEX

Decision alternative number A thru E: Q1 through 5) I DA

Decision nodes values a, b. c, d, e, f (I through 6) II)N

Operator number M

Index for goal importance values J

Course of action index A

Utility of each decision alternative U(IDA)

Lower portion of move probability matrix (to decision points) CPROI(II)A, II)N

Top portion of move probability matrix, working copy TPROB(II)NII)N)

Move probabilities weighted by goal and course of action effects WPROH(INA,I1DN)

Weighted utility probability matrix WU(IDA, lI)NI

Decision state or current position of decision
a=l, b=2.. .f6, startr7, A8 ...E=12 DECIDE

Pseudo random number, equiprobable in the range 0-1 RY
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Itternit-duate variabhe in Biayesian procesI' J()NE

rvlmprar\ matrix fir ITIMI B in BaYeSMan process 'fIRKID NII )N

l'trcentag- t In( uease due to stress ll

Randon, ftac'tr around memn step time RF".S'T

TABLE (-7

Al JIUS'TM ENT ()F TRANSITIO IN PROBABILITI 'ES

IDA,a h V. d e f

A 05 o(12 .03 .M)5 .W), .01
1B .2) ll .112 .05 .032 .1 a

CIT(d)PIdI[A. INA- " Os .05 .01 05 .02 A

1.05 .05 . .0 1
E [.20 .05 .05 0.5 .06

SLIM: 7; .Is .16 .21 .20 SUM ('R()B dIIN

.00,.0 0001 .0027 .(15 .72 .1

(1,120 .0121 .0(1.2 .1() .0063 .0 (b)
WI I I)A. I llN) .1$ ,llia .01 :5 1 .1115.5 062 .() '(IIA).( 'R( B(II)A, II)N

01. 212 ,(11 Io 1 .1 o022 .0022

.00.22 ) .005 .OM,1 .( 8)l) .012 0

SUM: 12,15 01495 .0295 .0.112 3) 1 SUM WIAd1)N

.00114Sx.73- .01264 ...
12. .215 46'

WIhI(1 IDA, IIN) .1454 etc.

.0129

.2990 ...

SUM: .73 ...
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PROGRAMMATIC ASPECTS OF THE DECISION SUBROUTINE
This selection describes the decision subroutine from the programmer'analyst point of view. Details are
shown which relate to the implementation of the various processes previously described in this chapter.
The summary flow chart, Figure 6-2, is the basis for the detailed logic of the subroutine. The major result
of this section is the elaboration of Figure 6-2 in greater detail as shown in Figure 6-5. A parallel number-
ing scheme for the boxes is employed in these two figures. In Figure 6-2, logic boxes are numbered I
through 12; correspondingly, the processes shown in box number n in this figure are detailed in bozes na.
nb, etc., in Figure 6-5. Hereafter, in this chapter, all box numbers refer to Figure 6-5 unless otherwise
stated.

We consider the situation in which the decision subroutine is entered from the MAIN program whenever
a decision task is reached. Up to five alternative decision choices are possible on each decision, but only
one is identified as correct. The parameter and other input information passed from MAIN to the deci-
sion subroutine are identified in Table 3, which includes FORTRAN names for these data items, (see also
Figure 2, box 1). Other data items used in this subroutine are also defined and named in Table 3.

If specified by the MAIN program, the non zero value of IDM determines the operator who is to make the
actual decision on a multi-operator task. If IDM is not specified (i.e., IDM=O), the operator who will make
the decision is determined by selecting the one whose speed/ proficiency, F(M), is lowest over those as-
signed to this task (see box 2). If all operators in the simulation are always eligible for consideration as
the decision maker, all F(M) values should be considered. If a subset is eligible, this subset of operator
numbers must also be provided as input (Table 2, Item 8).

Box 2b is included to set up a working copy of the two parts of the input probability matrix in temporary
storage. In this way, the 6 x 6 and 5 x 6 portions of the original probability matrix provided as input (Ta-
ble 2, Item 1), will be used.

The values in this nodal transition probability table are then adjusted in box 3a as a function of the se-
lected decision maker's speed/proficiency value, F(IDM). If this selected F(IDM) value is less than one,
signifying a faster or more proficient than average operator, then the value of all transition probabilities
in the correct decision row (IDA = RIGHT) are increased as a function of F(IDM). In this case, the value
of the probability values in other rows are decreased to make up the difference on a proportional basis
(keeping the sum of probabilities for IDA = RIGHT are decreased which simulates slow operators being
less likely to make the correct decision. Similarly, in this case, probabilities in other rows are decreased
so that the sum of all transitional probabilities will remain 1 for each column of the probability table, Ex-
hibit I. No changes occur in box 3a if F(IDM) equals 1.0.

Box 3b shows the logic for adjusting these resultant transition probabilities CPROB as function of the
three goal importance values GI(J),=l, 2, 3, provided as input. Sample data, to illustrate this calculation
are shown in Table 4. Given the example goals and values of Table l(a) and the course of action effects
matrix (3 goals by 5 decision alternatives) of Table 1(b), the utility vector U(IDA) of Table 1(c) is calcu-
lated as their produce. Sample data for the CPROB probabilities and their column sums (bottom part of
Exhibit I only) are in Table 4(a). Using these data, weighted utilities, WU(IDA,IDN) are calculated and
summed by column as shown in Table 4(b). These, in turn, are used with the column sums in Table 4(a)
to develop modified transition weighted probabilities, WPROB(IDA,IDN), the first column of which is
shown Table 4(c), according to the rule:

WJ(II)A,II)N. SUMCPROB(lI)N
WPROB(IilA, II)N)r - - -- -- - .I

SUMWU (Dr)N)

In box 4a of Figure 6-5, several resets are performed prior to enduring the cyclic decision loop. The cur-
rent value of the decision location, )ECII)E. reflecting the node or decision state (i.e., where the process
currently rests, (see Figure 6-1) is initially set to seven to represent the starting state. Also the count of
the number of decision steps, COUNT, is reset to zero. The output variable specifying the correctness of
the final decision (OUTRITE) is reset to 0.
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Box 5a starts the cyclic step process with the increase by one of the count of decision transitions. Box 5b
contains the test to ensure that the random mark process does not continue indefinitely. If the number of
iterations (COUNT) exceeds a preselected limit (MAXSTEP), control is returned to the MAIN program. A
value of OUTRITE=O will indicate to MAIN, in this case, that no decision was reached.

Next, in box 6a, the decision state is recalculated, representing a step (usually a movement) within the
node selection network. To accomplish this, a new vector of length IDN + IDA is formed using elements
from the column of the CPROB and WPROB matrices which represent the current decision state. (An ex-
ample of this process is shown in Table 6-5.) This is done since the node to node probabilities in the
('PROB matrix are unchanged, and the node to decision state values have been modified, their current
values being in the WPROB matrix. The column selected is the one representing the current decision
state, i.e., the value of DECIDE.

The resulting column vector, CUMPROB(IDN + IDA), is formed by accumulating these values. It then
has 6 + 5 - 11 elements whose last element should then equal 1. These probabilities reflect the likelihood
-f stepping to each of the 11 potential next positions. A pseudo random number in the range 0-1 is then
selected and compared against the values of CUMPROB to select the movement of the decision state. The
new value of I)ECII)E will be the largest value of the IDN, IDA index (1-11) for which RY -CUMPROB
II)N-I)A).

If the new value of I)ECIDE represents a decision alternative box in Figure 1, i.e., is greater than 6, then
• decision has been reached and the processing continues at box 9a and subsequent boxes to conclude the

subroutine.

If a decision has not been reached, processing continues in the cyclic loop with box 7a which implements
the Bayesian technique. The first step is calculation of a six element vector of conditional probabilities
by a random process, CONI)(II)N). The second step is calculation of the vector product P
(-J.1 Ti(JIIx) • P(x), the sum of six products. The third step is actual calculation of the a posteriori
probabilities for a single row of the TPROB matrix, i.e., the row decide. This is done using the
relationship:

P(J I I x__P(x_
lP(x IJ l) -

P(J I1)

for each of the six elements in the row of a temporary matrix "IPPROB. In the fourth and last step of this
process, elements of the 6 x 6 probability matrix are adjusted so that there is no change in column sums.
To do this, the amount of the differences is saved as PDIFF(IDN) and each column of the 1IPROB(IDN,
IDN) matrix, in turn, is considered. The sum of elements of al] rows in the column except the row IDN =
)ECII)E is then taken. The new value of each matrix element is changed as a function of the difference

and the ratio of that element to the sum of the column elements. In this way a new copy of the TPROB

matrix is fo~rmed for all other rows.

The last remaining calculation in the decision loop is the development of ratios of a priori probabilities
required in the calculation of problem complexity.

Ifthe dec'isio has been made in box 6b, processing continues in box 9a with a determination of the va-
lidity 'of the decisi(n. The output indicator OUTRITE is set to R or W to indicate whether the outcome is
right o~r wro ng.

Next in box Ita a complexity value of the decision is determined as the average of all the ratios calcu-
lated during the decision iterations. Using this value (COMPLEX) and the linear relationships shown in
Figure 6.3. the decision stress is calculated as implemented in box I Ia. Note that the randomization ef-
fect around the nominal stress values is accomplished by adding 0.1 RI) to the nominal, where RI) is a
normal deviate, i.e., randomly selected from a normal distribution with a mean of zero and a standard de-
viatli of w01e.
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Last, decision time is calculated as shown in box 12a. The percentage time increase, PJ I, is the function

presented in Figure 6-4. The factor RFST is calculated as a sample from a normal distribution with mean

2.25 to be used as the number of seconds required for each decision movement. Thus the decision time

calculated in seconds of time is the result of three factors: the number of steps 1('()UNT). the time per

step RFST, and the influence of (lecision stress (1 + I

Following this calculation, the subroutine is completed and control reverts to the MAIN program.

TABLE 6-ti

EXAMPLE CALCUIATION OF DECII)E

Selected Accumulated Example Selected IDN.

Column Column Value of Value of 11).4

fromr froun the Pseudo the Is' t ndex

TPROB ('1 MPROB Random Decsion
Numn her R Y: Snta te:

a ).22 0.22 0.293 3 or c I
b 0.0 1 0.23 since

F i -co.15 L;.3 .23 .29;) 1

d 0.08 0.46 .:8 .293 4

e 0. 1(1 (.56
f 003 (.59 6

' Selected
('olunin

frol?)
WPROB

A (. 1 0.69
B (.1 ((.79

S((.06 (.9(0 I0

E (. 1( 1.0( I
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SECTION VII
COMMUNICATION

INTRODUCTION
The probability of' accurate speech communication between personnel working within the AN UPl)-X
system is modeled in this chapter with consideration of the message receiver. For purposes of the simu
tation, it is assumed that persons producing verbal messages do so without error. It is further assumed
that an\- loudspeakers, headphones, and other items of speech transmission hardware are selected and
designed for the AN UPD)-X system so that the articulation index associated with speech commu-
nications approaches 1.0. The accuracy of the listener's reception of speech communication is modeled
through application of' relevant data concerning human language processing. Specifically. the corn-
putation of probability of' correct message interpretation is based on research into the correlates of com-
prehension of textual materials-an area in which there has been considerable recent research.

BACKGROUND
In a series of studies (Siegel & Burkett, 197.1; Siegel, Williams, Lapinsky, Warms, Wolf, Groff. & Burkett.
197: Williams, Siegel, Burkett, & Groff, 1977 a). Applied Psychological Services investigated 1-4 the-
oretically based factors related to language comprehension, examined relationships between the factors
and comprehension, verified the factors, developed a multiple regression equation which predicts compre-
hension of text, and performed a study which validated the regression equation.

Normative data were also collected describing the occurrence of the 14 variables in four types of Air
Force publication: (1) study guides employed in formal classroom training, (2) manuals and regulations of
the type used for field and occasional ciassroom reference, 3) career development course I('l)C texts
(self-study materials used by enlisted personnel to meet a portion of the requirements for upgrading). and
P.|) technical manuals (publications presenting the specific methods and procedures to be followed on the

job and related information). To assemble the normative data, two hundred blocks of text were selected
from large samples of each type of publication. In each passage, a carefully supervised analytic team
measured the level of each of the 14 variables of interest. At the completion of the analyses, the values
were calculated at which the nine deciles occurred for each studied variable. These decile values are em-
ploed as indices if message difficulty in the present simulation.

To develop a comprehension equation, 14 passages were selected from U.S. Air Force correspondence
course texts concerning technical subjects. Each passage was 600 words in length. Levels of' the 14 var-
abhles hypothesized to be related to language comprehension were measured in each 100 word portion of
each passage. Comprehension of the passages was assessed by application of the dloze technique. The
cloze technique, developed by Taylor (1953), is a method for measuring comprehensibility of text. The
cloze score is computed as the percentage of deleted words in a passage which is correctly filled in by a
subject.

A family of multiple linear regression equations was developed which allow prediction of comprehension
(cloze score) as a function of the measured levels of the predictor variables studied. The multiple cor-
relations between cloze score and varying sets of predictor variables ranged from .38 through .61.

A four-variable equation developed by Applied Psychological Services which relates language character-
istics to comprehensibility was selected for use in the present work. This equation was found to predict
comprehension with moderate adequacy R=.54. Of the four variables appearing in the selected equation,
two are based on the Structure-of-Intellect taxonomy of mental abilities developed by Guilford and his as-
sociates (e.g., 1950, 1954, 1964, 1966, 1967), and two are based on psycholinguistic constructs concerning
the manner in which language may be processed. The four are described in greater detail below.
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STRUCTURE-OF-INTELLECT VARIABLES
As the result of a research program conducted over many years, Guilford and his associates (e.g., 1950,
1954, 1966, 1967: Hoepfner, Guilford, & Merrifield, 1964) developed a three-factor taxonomy of human
mental activity. Based on factor analytic procedures, he described 120 nonoverlapping intellective activ-
ities. The three factors isolated by Guilford include: (1) "contents," indicative of the form in which infor-
mation may be presented, (2) "operations," describing the types of processing applied to the information,
and (3) "products," which describe the forms in which the output of the operation may occur. Within con-
tents, four categories exist: figural, symbolic, semantic, and behavioral. Five operations are available:
cognition, memory, convergent production, divergent production, and evaluation. The six categories of
output include: units, classes, relations, systems, transformation, and implications. Each combination of
one content, one operation. and one product represents one unique (lass of intellective function. The
(lasses, based as they are on combinations of categories within three orthogonal factors, may be repres-
ented as a cube composed of 120 cells. Guilford and his colleagues have identified examples of per-
formance and tests for each of a majority of the 120 cells.

Siegel and Bergman (197-4) postulated these Guilford abilities to constitute an intervening variable be-
tween the surface structure of language (the structure as the message is presented) and the deep structure

(the structure after transformation to simplest form is completed). This intervening variable, called "intel-
lective load," has to do with the types and amounts of intellective processes required for converting the

(-oded language into a meaningful message. The components of this intervening variable are based on

the taxonomy of mental abilities developed by Guilford and his associates.

Siegel and Bergman 1974) hypothesized that language materials which require a high level of Structure-
uf-Intellect ability would be less comprehensible than messages requiring the same ability at a lower lev-
el. s4iegel and Bergman examined the various Guilford categories and selected eight which seemed most
relevant to comprehension of language. As the result of an experimental analysis, Siegel and Bergman
verified the relationships of levels of the eight selected variables to language comprehension. The two
meaisures which were adopted for the, present simulation are Memory for Semantic Units (MMU'. and
Evaluation of Symbolic Implications (ESI).

MEMORY FOR SEMANTIC UNITS (MMU)
According to Guilford (1967i. MM1U is closely related to memory for ideas, (-oncepts, or facts. Siegel and
Bergman (1974) demonstrated that repetition of facts increases comprehension. The measure of MMU
which is used in the multiple regression equation involves the number of different nouns in a message di-
vided by the length of the message in words. Each unique noun is assumed tii he associated with i

unique idea o)r c(n-ept. Accordingly, the rate of occurrence of new nouns is considered to reflect the num-
ber o ' fats, con(epts. etc., which is presented. This measure of MMU T was found to be related to i message
com prehension by Williams et al. (1977 a) and by Siegel et al. (1976).

EVALUATION OF SYMBOLIC IMPLICATIONS (ESI)
Within the Structure-of-Intellect M del. Guiiford ( 19671 stated in regard to the ESI that:

Since common svn inyms f)r implications are conclusion, inference. or expec-ted
co(nseqluence iir mutcime. these ar thi kinds of mental events that call for evalu-

atitm. Are the cinilusiiins sound: are they in all probability correct: do they frdlow

trim given infirmatio ni

.In a recent analysis (Hoepfner et al., I96I , three tests designed for ESI came
,ut ti gether on a fa'tor. The three ESI tests included Abbreviations, which asks E to
shv ' ir what wi,rd a given abbreviation best stands. An abbreviation implies a word

(,r w irds for which it stand,.. Some abbreviation-word conjunctions are more reason-
;luh, iir apt than others. For example, the abbreviation ('RNT might stand for (1

cresc ,ent. (2) m nathon, or (3{) c'urrent (). 200).)
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Accordingly. the frequency of occurrence of abbreviations in a message may be considered

as an indication of the level of mental effort required to understand the message and of the

probability of message misinterpretation. Siegel and Bergman (1974) found frequency of ab-

breviations to be related to message comprehension, and this finding was confirmed by

Siegel et al. 11976) and by Williams et al. (1977 a).

PSYCHOLINGUISTIC VARIABLES
Working in parallel with Siegel and Bergman, Lambert and Siegel (1974) sought re-

lationships between language variables suggested by psycholinguistic theory and message

comprehension. Two of these variables, Yngve Depth (YD) and Center Embeddedness (CE i,

appear in the multiple linear regression equation employed in the present simulation

module.

YNGVE DEPTH (YD)

A phrase structure hypothesis for describing language behavior was presented by Yngve
I 196)(0. According to the h 'ypothesis, sentences are produced, or interpreted, through gener-

ation of a "sentence strutture tree' in a top-to-bottom, left-to-right direction. At any given
time, a listener stores only that portion of the left hand side of the tree necessary to process

the words already heard. As the listener works down the tree, he produces both branches of

a node, but the words necessary to fill in the right branch of a node are not generally per-
4ceived until all words contributing to the left branch have been stored. Accordingly, because

of' increased memory requirements, sentences whose branching structure is more complex

and generally possesses a greater YI) value, are held to be more difficult to interpret. Bor-

muth (1969j found that sentence depth was correlated with the difficulty of a passage. This
finding was confirmed by Wang (1970), Lambert and Siegel (1974), and I)iegel et al. (1976).

CENTER EMBEDDEDNESS (CE)
It follows from the discussion of YI) that the presence of phrases or clauses between the

subject and predicate of a sentence should be associated with higher difficulty of compre-

hension. Such phrases or clauses delay the receipt of the words required to fill in the right

branch of the subject-verb split of the sentence.

Schwartz et al. (1970) demonstrated that inclusion of center embedded material decreases
comprehensibility. The results of Lambert and Siegel (1974) supported the findings of
Schwartz et al. However, Siegel et al. (1976) found that center embedded materials were as-

sociated with a higher comprehension level. Siegel et al. indicated that they believed that
center em beddedness affects comprehension. but that its measurement is method sensitive.

COMMUNICATION SUCCESS EQUATION
The comprehension equation selected reads:

Comprehension score - .l7MMU - .I:12ESI + .156YI) - .0773CE.
(Equation 1).

The comprehension score predicted by this equation is cloze score, as described previously.

'loze score describes the likelihood with which one may corre(tly determine a word which
is missing from text. but not the likelihood of inferring the overall meaning of a message.

Accuracy in answering objective questions concerning the content of a message should be

closely related to the probability of correct message interpretation. The numerical values of
cloze scores, while rather low when compared to scores obtained through more typical com-

prehension measures (responses to questions of various types), may be converted to compre-
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henision scores. Brmuth i 19i7 ) found. fir example. that a clz.e score of' :3)":, corresponded

to a score of ;i5': on a ciiinprehension test emploving objective questions, and that a cloze

sciore of 50' ' corresponded to an objective score of ,(O":,. In 1 968, liormuth found clze scores

of lr': and 57": to cirrespind to ohjective scores oif 75' and l)";. In the work off Rankin and

C'ulhane ( 1969), cloze scores f -11 ', and 61", were found to correspond to objective test

scores of 75' and 9(';,. Fromr the ahove data, the relationship between cloze score and dor-

rect identification probability was calculated. The equation which expresses the re-

lationship is:

p(correct interpretation) = .622 (comprehension score) + .532.

(Equation 2)

And, Equation I may be algebraically transformed on the basis of Equation 2 so that it

reads:

p(correet interpretation) = .1 16MMU + .082ES1 + .097YD - .0)4(E .5:32.

(Equation :0

SIMULATION OVERVIEW
The processing of the communication module is shown as Figure 7-1. The logic within the

blocks of Figure 7-1 is shown in Figure 7-2, a three page detailed flow chart of the fune-

". . tioning of the communication module. The input variables required are defined in Table 7-1.

Data items utilized within the module are defined in Table 7-2, and output variables are de-

fined in Table 7-3.

I1'
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Figure 7-1. Overall Flow Logic for ('ommunication Subroutine.
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T1ABLE 7-1

I'ARAMETIERS ANI NIPUT'F( )H(OMMUNICATI( N MO! (thE

Paramneter or Input Data Itemn Data Vano,

1. Operator number who receives the communicationl M

2. Message Length C'ode M SG1I
S- short (mean length 50) words)

M -medium (mean length 1044) words)
I. - long (mean length 2400 wo rds)

3. Mean sentence l engt h (words per sentence) over all cornmmtunication tasks.
D efault value MSI. I s.fi words. NMSI.

4. Standard deviation of sentence length (words per sentence) over all commu-
nica t ins tasks. Optionmal d efaul t: SSI . I wo rds. SSI,

Current stress value of receiving operator sTR(M4 t STR(M4

6. Stress threshold value for operator M. the value of stress at which per-
formance begins to change for the worse. SFR M M

TABLE 7-2

D)ATA ITEMS USED) IN THE COMMUNICATIONS MOIDULE

Itecm D)ath AO pli

Sentence number in message SE
Number of last sentence in message SEMAX
Length of sentence (number of words) SLENiSE i
Random deviate, pseudo randlom number from a normal distribution mean 04.

sigma - I) RI)
Pseudo random number equiprobable in the interval ((to I RY
Length of the message (number of words) MSGI.N
Temporary storage for message length TmSGILN
Total length of all sentences in the message (words) TSI N
Average sentence length over this particular message AS!,
Yngve depth of message Y 1)
Yngve depth percentile YI')
('enter embeddedness of each sentence HI or 0) CE(SE)
Total center embeddedness tally TWE
Center emheddedness of message ('EMSG
Center emhedded ness percentile!590 CEP
Number of different nouns in the message NDN
Final value of NDN FNI N
Memory for semantic units over entire message MMIT
MMIJ percentile MM11P
Number of abbreviations per hundred words RA
Evaluation of symbolic implications ESI
N umbher of a bhreviations per message NA
ES! percentile F SIPI
Message Interpretation probability Mill
Communication task performance time CPTr
Average value of communications time without stress factors V
A stress-to-threshold ratio useud in ('Ii' calculation I
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MESSAGE LENGTH
Message length is based on an input value by message. The mean value is determined by the model user
Three input message length levels are permitted: (1) short-mean length 1 1 words, standard deviation
15, (2) medium-mean length - 100 words, standard deviation - 30, and ri1 long-mean length z 200

words, standard deviation - 45.

SENTENCE LENGTH
The mean and standard deviation were computed of the length of the sentences which Williams et al.
used in developing the norms describing Air Force technical literature. These values were 18.6 and 8.1. re-
spectively. The model user may assign a mean and standard deviation of sentence length within mes-
sages. If such an assignment is not made, the default values above are employed. Sentences lengths are
generated until the total of their lengths equals or exceeds the previously determined message length.

YD CALCULATION
Two hundred sentences were selected from the samples of Air Force materials on which the previously
described norms were based. The selection of these sentences was systematic and unbiased. A regression
equation was calculated which related YD to sentence length:

Y=) .028 (average sentence length) , 1.146.

The correlation between the two variables is .60.

The data required for the accuracy of interpretation equation are a percentile value. To obtain the re-
quired percentile value, we determine the mean YI) of the sentences of the message or message block. We
then determine the percentile value through reference to the following normative table:

Mean YD Percentile Value

1.97 ' x 5 (least interpretable)
1.86 , x -i-1.97 15

1.79 x.&-1.86 25
1.75 - x. -1.79 35
1.69 - x -1.75 45
1.64 ' x 1.69 55
1.601 x 1.64 65
1.57- x< 1.60 75
1.48 x _1.57 85

x -- 1.48 95 (most interpretable)
or, simplifying: Percentile = 3S9 - YD .005.

CE CALCULATION
CE is also related to sentence length. However, CE is handled in the simulation in a somewhat different
manner. As in the case of YI), an equation relating CE to sentence length was developed for the 200 sen-
tences systematically selected from the set of Air Force messages on which the previously described
norms were based. In this case, the resulting equation was:
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CE = .0206 (sentence length) + .003

and the correlation between the two variables was over .90. Since fractional values of CE are meaning-

less, the value computed for CE is taken as a probability of center embedded material appearing in the

applicable sentence. The computed probability is compared to a randomly selected value between 0.0 and
1.0. If the probability value exceeds the randomly selected value, then the sentence contains center em-
bedded material. The CE level of a total message is computed as the number of sentences of the message
which are determined to contain center embedded material divided by the number of sentences in the

message. This value is converted to the required percentile value for input to the multiple regression

equation through reference to tabulated values. The values for determining CE percentiles are:

CE Value Percentile
x > .77 5 (least interpretable)

.877-Lx >.77:3 15

.773 __x r.566 25

.566 x >.416 35

.416 x > 307 45

.307-- x >. 184 55

.184_x >.100 65

.100a-x> P38 75

.038. - x > 0.00 85
x 0.00 90 (most interpretable)

'I'wenty percent of the Air Force Messages studied had no center embedding. Hence, the percentile cor-

responding to a CE value of 0.00 is 90, the midpoint of a set of samples lacking any center embedded
material.

MMU CALCULATION
The variable MMUJ is a measure of the number of different nouns present in a message. Such a measure
should be affected by message length. In a brief message, each word used might appear a single time. As

the message grows longer, more and more words will be used which have appeared previously, and words
nvel to the message should be encountered with increasing rarity. Chotlos (1944) found the number of

different words appearing in a language sample to vary as a function of message length. Chotlos pre-

sented equations describing the vocabulary diversity of students of below average, average, and above
average tested l.Q. The equation for above average students seems most applicable to the AN UPD-X sit-

uation. For this subject group:

D = N (10.321 - log, N)
9.551

in which 1) represents the number of different words appearing in a message and N represents the length

of the message.

According to the above equation, a 1(0 word message should contain 59.8 different words. Williams et al.
(1977), found a mean of 61.8 different words in their 10(0 word message blocks. Chotlos' equation fits the-

se data very closely.

Williams et al. found a mean of 19.8 different nouns per 100 word message in the same work. This value
is very nearly one third of the mean number of different words of all types found in those samples.

Hence, number of different nouns, (NDN) is determined by dividing the value obtained through Chotlos'
formula above by three, or

NDN z N (10.321 - loge N) '3.

9.551

The NI)N value to be used in computing MMU is randomly selected from a normal distribution whose

mean equals the value of NI)N and whose standard deviation equals one third of the value of NI)N. This
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final value of NDN is used, with message length, ML, to determine the MMU value of the message, ac-
cording to the formula

NDN
MMU = 1- ML

The percentile value corresponding to the obtained MMU level is obtained by reference to the following

tabulated values:

MMU Value Percentile

x < .783 5 (least interpretable)
.783 <--x < .802 15
.802<s-x < .S13 25
.813 <_x < .824 35

.S32 Lx < .S41 55
.841 -x < .150 65
.850 x < .861 75
.861 -x < .874 85
.874 s x < 95 (most interpretable)

ESI CALCULATION
ESI is calculated as the number of abbreviations present in a message divided by the length of the mes-
sage, and that quotient subtracted from unity. In the work of Williams et al. (1976), 1.47 abbreviations
were found per 100 words, on the average. The standard deviation of rate of occurrence was found to be

/ 1.95. The rate of occurrence of abbreviations in each simulated message is determined by randomly se-
lecting a value from a normal distribution whose mean is 1.47 and whose standard deviation is 1.95. This
rate of occurrence of abbreviations per 1(0(0 words is multiplied by message length/ 100 to determine the
number of abbreviations in the message. The obtained value is rounded to the nearest integer, and the
ESI value is then computed according to the following relationship:

ESI 1- NA
ML,

in which number of abbreviations is represented by NA and message length is represented by ML.

The obtained ESI value is, again, transformed to a percentile via tabulated values:

ESI Value Percentile

x .9.4: 5 (least interpretable)
.9,43 -x .967 15
.967 < x < .979 25

989Lx .992 .45
.992 x 99S$5
.998't x 1.01) 65

x I .)) SO (most interpretable)

Thirt v percent of the Air Force messages studied had no abbreviations. Hence, the percentile value cor-
responding to an ESI value of 1.00 is S0, the midpoint of the set of samples lacking any abbreviations.

MESSAGE INTERPRETATION PROBABILITY
Message interpretatimn probability is based on the CE, YI), MMU, and ESI percentile values derived in
earlier steps. The derived percentiles ar, entered into Equation 3 and a probability value is determined.
The probability value is compared with a random number to determine interpretation success or failure.
In the case of success, the results are stored for access by the main routine. In the case of failure, the
next task to be simulated is determined by MAIN.
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MESSAGE TIME
Miller (1951) stated that the average rate of speech is approximately 1.5 words per second, This value,
with a standard deviation of (.5, is employed to determine communication time in the AN LUII)-X simu-!

lation as a function of message length in words.

STRESS
As discussed elsewhere in the present report, the value of stress is available for each operator in the AN

JPI)-X system simulation. With regard to communication, stress is allowed to influence the rate of
speech, hence message time. Stress is allowed to cause speech rate to increase until the spearker's stress
threshold is attained. At stress levels above the speaker's stress threshold, speech rate falls to the speak-
er's base rate. Stress does not affect accuracy of message interpretation in the AN UPI)-X simulation.

PROGRAMMATIC ASPECTS
In this section those human-effects which have been described are converted into a form suitable for defi-
nition of a computer subroutine, termed the communications subroutine or communications module. This
subroutine is entered by the main program once for every communication task of the mission. It simu-
lates the receipt of a single message containing a number of sentences designated by SEMAX bY a single
recei,.er whose operator number is designated by M. The principal results of the communication module
are:

(I) an indicator as to whether or not the communication was successful (RCOM S or U).

(2) the length of time, in seconds, required for the communication, i.e.. the communication per-
formance time ('PT).

INPUTS
The data items shown in Table 7-1 are those which are provided as inputs to be made available from the
main program to the communication subroutine. If there is more than one message receiver, the analyst
selects the operator (M) whose receipt of the message is most important. The message length code speci-
fies the class in which the size of the message to be transmitted falls. This applies only to the single mes-
sage, i.e., the specific task being simulated. Note that the mean sentence length, MSI,. and its standard
deviation, SSI,, (both of which inputs are optional) are values which are applicable over all commu-
nication tasks in the mission. To cause the use of the default values (MS1, = 18.6, SS - 8.1) set the input
for MSL = 0. The current value of stress and stress threshold applicable to the receiving operator are as
defined in other modules in this series.

LOGIC FOR COMMUNICATIONS SUBROUTINE
Figure 7-2 shows the detailed logic for the communication module and as such corresponds to the general
logic flow chart shown in Figure 7-1. For each data processing element shown within a box in Figure 7-1,
there are one or more similar boxes in Figure 7-2. These detail the operations to be performed, together
with data item processing descriptions to accomplish the required processing. Thus Figure 7-2 is suitable
for use as a specification for the preparation of the communications module computer program.

Each of the data items used in Figure 7-2 is defined and explained in Table 7-2.

During these calculations, pseudo random numbers RI) and RY are calculated using routines assumed to
be available in the library for the selected computer. Note that a different value should he 'alculated for
each usp/encouter of either of these pseudo random numbers.

The number of words in the message, MSGIN, is calculated in the first block of Figure 7-1, and is used to
determin- the average length of the sentences comprising the message (3rd box). Note, in box 3, that in
order to hive an integral number of sentences represented in the average, that the total of all words in
all sentence; )f the message (TSLN) will usually exceed the original number of words in the sentence
MSGLN. Tht.efore, the TSLN value is used thereafter as the actual message length (e.g., in the MMU
calculation). Each entry of the subroutine will therefore begin with the generation of a new message
whose size is selected by a Monte Carlo approach.
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The values of Yngve depth Y), center embeddedness (('E), Memory for Semantic U!nits (MMU), aLd
Evaluation of S vmbolic Implication (ESI) are determined and for each of these a percentile value is then
determined as described ahove.

The probability of correct message interpretation, MIP, is determined by Equation 3 followed by the
stress STR(M) and performance time (C(PT determination. The (PT equations are essentially those same
stochastic relationships utilized in the scan detect module with adaption to the basic element of commu-
nication time, the number of seconds per word.

Success or failure is determined and recorded last by comparing a pseudo random number in the 0 to 0.8
range with MIP 100.
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SECTION VilI
CONCLUSIONS

Generality was a goal in the algorithm designs so that the resulting simulation modules will be valid
across various equipment configurations and system designs for the AN/UPD-X. This objective of the
modules was achieved in that a user of any module need only modify input parameters in order to accom-
modate system oriented feature differences, such as:

* radar coverage
* display characteristics
0 target types
* display size
0 target resolution
0 operator ability
0 mission time
* communications load
0 decision aiding features
*0 operator training requirements
* operator load imposed

The end products are considered to enhance a total AN/ UPD-X man-machine model.

The modules are rich in variables relevant to the particular AN/UPI)-X system application, yet are de-
signed so as not to overpower the MAIN simulation program itself in complexity, computer memory, or
computer run time required. As can be seen above, the variables are relevant to many other applications
where the systems or subsystems are similar. Modularity allows each module to be independently utilized
or any combinations formed to simulate a host of system types and configurations.
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REFERENCE NOTE

Wilimmrs. A.R. Siegvl. AT, B~urkett. 4.R.. & Groff, S.D). IUnpublished dlata. T'he equation presented was
derive ais part ofthe work ot Williamis tet al. (19 77?a) hut was not presentedl in their report. I 977(b).
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